IOWA STATE UNIVERSITY Digital Repository

Retrospective Theses and Dissertations

Iowa State University Capstones, Theses and Dissertations

1-1-1984

Simulation of a nuclear power plant, with a twotime-scale matrix linear decoupling algorithm

Michael Francis Nollet Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Engineering Commons

Recommended Citation

Nollet, Michael Francis, "Simulation of a nuclear power plant, with a two-time-scale matrix linear decoupling algorithm" (1984). *Retrospective Theses and Dissertations*. 18511. https://lib.dr.iastate.edu/rtd/18511

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digirep@iastate.edu.

Simulation of a nuclear power plant, with a two-time-scale matrix linear decoupling algorithm

by

Michael Francis Nollet

A Thesis Submitted to the Graduate Faculty in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

Major: Nuclear Engineering

Signatures have been redacted for privacy

:Y

Ames, Iowa

TABLE OF CONTENTS

NOMENCLATURE V			vi
I.	INTRODUCTION		1
II.	PROPOSED OBJECTIVE AND SCOPE		2
III.	LIT	ERATURE REVIEW	4
IV.	THE	TWO-TIME-SCALE MATRIX DECOUPLING ALGORITHM	6
	Α.	Computing the L Matrix	18
	в.	Computing the K Matrix	29
	с.	The Choice of Slow and Fast Variable	34
	D.	Solution of the Point-Kinetics Equations Utilizing Two-Time-Scale Decoupling	
		Methods	38
v.	MAII	N DEVELOPMENT OF THE PROGRAMS	53
	Α.	Main Program NERO	53
	в.	Reactor Kinetics Subroutine GALBA	55
	с.	Thermal Hydraulics Equations OTHO	73
	D.	Steam Generator Subroutine DMTN	84
	E.	Graphics Subroutine VESPASIAN	99
VI.	TES	IS AND RESULTS	101
VII.	SUMMARY AND CONCLUSIONS		130
VIII.	LITERATURE CITED		133
IX.	ACKNOWLEDGMENTS 13		
х.	APPI	ENDIX A: USER'S GUIDE	136
XI.	APPI	ENDIX B: PROGRAM LISTING	146

LIST OF FIGURES

Figure	1.	Reactor and steam generator power with feedback. Initial power 2000 MW, 10 cents reactivity step insertion, U-235 fuel	103
Figure	2.	Reactor and steam generator power with initial power 2000 MW, 10 cents reactivity step insertion, U-233 fuel	108
Eigure	3.	Reactor and steam generator power with initial power 2000 MW, 10 cents reactivity step insertion, Pu-239 fuel	109
Figure	4.	Reactor and steam generator power with feed- back and prompt-jump approximation. Initial power 2000 MW, 10 cents reactivity step in- sertion, U-235 fuel	
Figure	5.	Reactor and steam generator power with two-time-scale matrix decoupling algorithm and feedback. Initial power 2000 MW, 10 cents reactivity step insertion, U-235 fuel	112
Figure	6.	Reactor and steam generator power with feed- back and ramp-input model. Initial power level 2000 MW, ramp-input model with ramp of 0.5 cents reactivity per second for 20 seconds, U-235 fuel	- 114
Figure	7.	Reactor and steam generator power with ramp-input model. Time of run 3 minutes	115
Figure	8.	Reactor and steam generator power with no feedback and no control system. Initial power 2000 MW, 10 cents reactivity step insertion, U-235 fuel	116
Figure	9.	Reactor and steam generator power with no feedback and no control system and using the prompt-jump approximation	117
Figure	10.	Reactor and steam generator power with feedback and reactor control system. Initial power 2000 MW, 10 cents reactivity step insertion, U-235 fuel, gain -1.0E-07	119

Figure 1	1.	Reactor and steam generator power with feedback and reactor control system. Initial power 2000 MW, 10 cents reactivity step insertion, U-235 fuel, gain -1.0E-06	120
Figure 1	.2.	Reactor and steam generator with load fol- lowing and feedback. Initial power 2000 MW, throttle valve opened 10%, U-235 fuel	121
Figure l	.3.	Reactor and steam generator with reactor power step change. Initial power 2000 MW with 100 MW step change	123
Figure l	4.	Reactor and steam generator power with reactor power step change. Initial power 2000 MW with -100 MW step change	124
Figure 1	5.	Fuel temperature change. Initial power 2000 MW, 10 cents reactivity step inser- tion, U-235 fuel	126
Figure l	.6.	Reactor inlet, outlet, and average moderator temperature changes. Initial power 2000 MW, 10 cents reactivity step insertion, U-235 fuel	127

iv

LIST OF TABLES

			Page
Table	1.	Inverse eigenvector matrix of coefficient matrix of point-kinetics equations, with U-235 fuel	36a
		0 200 1401	504
Table	2.	Correlations for physical constants of H_2^0 as a function of temperature	83
Table	3.	User-selected parameters, their default valves and lower and upper limits	143

vi

NOMENCLATURE

A	coefficient matrix; also control system gain
В	decoupled state variable
Bu	driving function
С	delayed-neutron precursor; also Celsius
D	correction matrix; also diameter of fuel assemblies
DENTC	change in energy transfer from primary to secondary side of steam generator from one tim step to the next
D _{hfg}	enthalpy
Et	total transferred from primary to secondary side of steam generator
I	identity matrix
J	Jordan canonical diagonal eigenvalue matrix
K	K matrix; also thermal conductivity; also Kelvin
K*	shorthand symbol for Lyapunov equation
L	L matrix
LMTD	logarithmic mean temperature difference
М	fundamental eigenvector matrix
Mf	mass of reactor fuel
M _m	mass of reactor moderator
Nu	Nusselt number
PWR	steam generator power
PWRCH	change in steam generator power from one time step to the next
Pr	Prandtl number
Q	inverse fundamental eigenvector matrix

- R residual matirx
- R* shorthand form of algebraic
- Re Reynolds number
- T transformation matrix
- T* transformation matrix where K=0
- TD temperature difference between primary and secondary sides of steam generator
- TDENTC total change in energy transfer from primary to secondary side of steam generator
- T_f fuel temperature
- T_i reactor coolant inlet temperature
- T_m reactor moderator temperature
- T reactor coolant output temperature
- T_{pii} reactor inlet temperature
- ${\rm T}_{\rm poi}$ reactor outlet temperature
- $P_{s\sigma}$ average steam gnerator temperature
- ${\rm T_{sii}}$ inlet temperature on secondary side of steam generator
- T outlet temperature of secondary side of steam generator
- U flow velocity of reactor coolant
- W mass flow rate
- X state variable
- Y transformed state variable
- c heat capacity
- c_{ps} heat capacity of fuel

cpm	heat capacity of moderator
h	time step
hf	fast time step
hp	heat transfer coefficient
hs	slow time step
i	subscript of iteration or time step
j	subscript of delayed neutron fraction
k	neutron multiplication factor
kg	kilogram
m	meter
n	neutron power
S	second
t	time
αf	Doppler coefficient of reactivity
α _m	moderator coefficient of reactivity
β	delayed-neutron fraction
γ	rampt-input rate
δ	differential quantity
ε	trial value for testing iteration cessation
Λ	neutron generation time
λ	delayed-neutron decay constant
μ	kinematic viscosity
ν	dynamic viscosity
ρ	reactivity; also density
ρ _f	fast decoupling ratio

viii

- ρ_s slow decoupling ratio
- ρ_t total reactivity
- τ constant of integral controller
- τ_{c} time constant of differential controller

I. INTRODUCTION

Computer simulation of processes that occur in the "real world" is steadily becoming a more significant learning tool as computer costs continue to decline. One advantage of this method of learning is that students are able to see how natural or industrial processes work without having to engage in deductive reasoning or calculations themselves. In this way, the regions of the human brain that engage in inductive, or nonquantified thinking, can be reached. Students can quickly acquire a "feel" for how these processes will work in general and later on (or perhaps simultaneously) learn how to perform the calculations analytically.

The modern nuclear power plant is a system that can be simulated on a digital computer. In addition to the obvious desirability of being able to simulate a nuclear power plant, such a simulation will enable a user to graphically see such phenomena as the effects of feedback, the effects of control systems, the relationship between a reactor and its steam generator, to name just a few.

II. PROPOSED OBJECTIVE AND SCOPE

The objective of the research described in this thesis is to provide a simulation of a modern nuclear power plant (PWR) with steam generator. The program associated with this thesis has been designed such that its user will be able to specify the parameters around which the system will operate. The user will be able to control feedback, a control system, reactor power levels, reactivity insertions, power output, steam generator throttle valve position, which reactor kinetics model to use, load following, and which fuel isotope is used. Output can be either in the form of a table or in graphics.

In addition, an algorithm has been devised that decouples the system of equations that describes reactor kinetics. This system is divided into two parts: one that contains the slow-acting phenomena, and another that contains the fast phenomena. After separate solutions have been obtained for each, the solutions are transformed back into the original variables. In this fashion, more efficient use of computer time is made.

The reactor coolant loop operates in an 11 second cycle. Coolant takes 5 seconds to travel from the reactor to the steam generator, remains 2.8 seconds in the steam generator, takes 3 seconds to travel back to the reactor, and remains

in the reactor 0.2 seconds.

All of the differential equations used in this program are solved for transient quantities. That is, a variable that is being solved for is made up of two components: a steady-state component and a transient component. The steady-state component represents initial value of the variable, and the transient component represents the difference between the current value of the variable and its steadystate value. Mathematically, this relationship is expressed, using a sample variable X, as

$$X = X_0 + \delta X_i$$

where

X₀ is its steady-state component δX is its transient component Since X₀ represents an unchanging value,

 $\frac{dx_0}{dt} = 0$, and $\frac{dx}{dt} = \frac{d\delta x}{dt}$

A group of simple reactor models suitable for classroom use is the purpose of this work. Because this project is for instructional use, the SI system of measurement will be used except in referring to temperatures, where Celsius (C) units will be used instead of Kelvin (K) units, and in referring to reactor primary side and secondary side pressures, where the English system is used. All calculations employ SI.

III. LITERATURE REVIEW

The objective of this study is to develop a program that simulates the operation of a modern nuclear power plant in a simplified way.

The program associated with this thesis solves the point-kinetics equations, thermal-hydraulics equations, and steam generator equations. The point-kinetics equations are solved through various models based on Duderstadt and Hamilton [5] and Hetrick et al. [8]. Their solution is aided by an algorithm based on papers by Anderson [1] and Hetrick [8] that can solve separately for the slow components and the fast components of the point-kinetics equations.

Specifications for the reactor and the steam generator were taken from Babcock and Wilcox Company [2] and from the Preliminary Safety Analysis Report for the Greenwood reactor of the Detroit Edison Company [4]. The Greenwood reactor, construction of which has since been cancelled, was to have been supplied by Babcock and Wilcox Company, so naturally the specifications were similar for both. Correlations for physical parameters such as specific heat, kinematic viscosity, thermal conductivity, and density where obtained from El-Wakil [6] and Keenan and Keyes [10]. The most useful heat-transfer correlations such as the Dittius-Boelter correlation were obtained from Karlekar and Desmond

[9]. Reactor pressure data were obtained from the U.S. Atomic Energy Commission [12]. The reactor control system was based on Danofsky [3], while the feedback theory and some of the reactor models used were based on Schultz [11].

IV. THE TWO-TIME-SCALE MATRIX DECOUPLING ALGORITHM

The point-kinetics equations are a system of firstorder nonlinear differential equations used in solving nuclear reactor kinetics problems. They are in general composed of one equation that solves for reactor power output (or neutron activity, to which power output is directly related) and a subsystem of equations that solves for the delayedneutron precursors, whose existence is so important in reactor kinetics.

The delayed neutrons originate from the radioactive decay of fission fragments. Since it is radioactive decay from many different isotopes that produce them, they come in a wide range of energies and mean decay times. The mean decay times typically are on the order of several seconds, while the mean lifetime of prompt neutrons will be taken as 0.0001 seconds [7]. Since the time scales of the two types of neutrons are so different, the same time step that would be most useful in solving equations for one type of neutron would not be suitable for the other.

Small time steps are needed in applying numerical techniques to solve differential equations for the prompt response. However, when they are used for solving for the much slower delayed-neutron precursors, progressive

arithmetic error can cause degradation of the quality of the solutions. Also, valuable Central Processing Unit (CPU) time in the digital computer solving the equations is wasted.

On the other hand, if time steps appropriate for the slow precursors are used in the prompt response, then meaningless answers are derived. The ideal case would be to use large time steps for the slow precursors, and small ones separately for the prompt response. A means will be developed in this section for doing just that.

Consider the system described by the vector equation

$$\dot{\mathbf{X}} = \mathbf{A}\mathbf{X}.\tag{4-1}$$

This represents the 7x7 coupled system of point-kinetics equations, which is to be decoupled into two independent systems of equations. One system will contain the slow mode variables, while the other will contain the fast mode variables.

Decompose the system represented by Equation (4-1) into the system

$$\begin{bmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2 \end{bmatrix} = \begin{bmatrix} \dot{\mathbf{A}}_{11} & \dot{\mathbf{A}}_{12} \\ \dot{\mathbf{A}}_{21} & \dot{\mathbf{A}}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}$$
(4-2)

where X₁ represents the slow mode variables and X₂ the fast mode variables. The slow mode corresponds to the delayed-neutron precursors, and the fast mode to the prompt

7a

neutron response.

Let

$$X = TY, \qquad (4-3)$$

where T is a transformation matrix. Then

$$T = \begin{bmatrix} I_{n_1} & -K \\ -L & I_{n_2} + LK \end{bmatrix}, \qquad (4-4)$$

where I_{n_1} is an $n_1 x n_1$ identity matrix, I_{n_2} is an $n_2 x n_2$ identity matrix, K is an $n_1 x n_2$ matrix, and L is an $n_2 x n_1$ matrix. K and L will be defined later. Also,

$$\mathbf{T}^{-1} = \begin{bmatrix} \mathbf{I}_{n_1}^{+KL} & K \\ \mathbf{L} & \mathbf{I}_{n_2} \end{bmatrix}.$$
(4-5)

Now again,

X = TY. (4-3)

This implies

 $Y = T^{-1}X, \qquad (4-6)$

which further implies

$$\dot{Y} = T^{-1}\dot{X}$$
 (4-7)

Equations (4-1) and (4-3) imply that

 $\dot{X} = AX = A[TY] = ATY, \qquad (4-8)$

and Equations (4-7) and (4-8) further imply that

$$\dot{Y} = T^{-1}\dot{X} = T^{-1}[ATY] = T^{-1}ATY.$$
 (4-9)

Expanding equation (4-9) yields

$$\begin{bmatrix} \dot{\mathbf{Y}}_{1} \\ \dot{\mathbf{Y}}_{2} \end{bmatrix} = \begin{bmatrix} \mathbf{I}_{n_{1}}^{+KL} & \mathbf{K} \\ \mathbf{L} & \mathbf{I}_{n_{2}} \end{bmatrix} \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{I}_{n_{1}} & -\mathbf{K} \\ -\mathbf{L} & \mathbf{I}_{n_{2}}^{+LK} \end{bmatrix} \begin{bmatrix} \mathbf{Y}_{1} \\ \mathbf{Y}_{2} \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{I}_{n_{1}}^{+KL} & \mathbf{K} \\ \mathbf{L} & \mathbf{I}_{n_{2}} \end{bmatrix} \begin{bmatrix} \mathbf{A}_{11}^{-A_{12}L} & -\mathbf{A}_{11}^{K+A_{12}+A_{12}LK} \\ \mathbf{A}_{21}^{-A_{22}L} & -\mathbf{A}_{21}^{K+A_{22}+A_{22}LK} \end{bmatrix} \begin{bmatrix} \mathbf{Y}_{1} \\ \mathbf{Y}_{2} \end{bmatrix}$$

and

$$\begin{bmatrix} \dot{\mathbf{Y}}_{1} \\ \dot{\mathbf{Y}}_{1} \\ \dot{\mathbf{Y}}_{2} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_{11}^{+KLA}_{11}^{-A}_{12}L & -\mathbf{A}_{11}^{K+A}_{12}^{+A}_{12}^{LK} \\ -KL & \mathbf{A}_{12}^{L+KA}_{21} & -KL & \mathbf{A}_{11}^{K+KLA}_{12}^{+} \\ -KA_{22}^{L} & KL & \mathbf{A}_{12}^{LK-K} & \mathbf{A}_{21}^{K} \\ +K & \mathbf{A}_{22}^{+K} & \mathbf{A}_{22}^{LK} \\ -\mathbf{A}_{22}^{L} & -LA_{11}^{K+LA}_{12} \\ -\mathbf{A}_{22}^{L} & +LA_{12}^{LK-A}_{21}^{K} \\ & +\mathbf{A}_{22}^{+A}_{22}^{LK} \end{bmatrix} \begin{bmatrix} \mathbf{Y}_{1} \\ \mathbf{Y}_{2} \\ \mathbf{Y}_{2} \\ \mathbf{Y}_{2} \end{bmatrix}$$

$$(4-10)$$

Introduce the algebraic Riccati equation

 $LA_{11} + A_{21} - LA_{12}L - A_{22}L - 0.$ (4-11)

If the algebraic Riccati equation is satisfied, then Equation (4-10) reduces to

$$\begin{bmatrix} \dot{\mathbf{y}}_{1} \\ \dot{\mathbf{y}}_{1} \\ \dot{\mathbf{y}}_{2} \end{bmatrix} = \begin{bmatrix} (A_{11}^{-A_{12}L}) & (-A_{11}^{K+A_{12}} \\ +K(LA_{11}^{+A_{21}} & +A_{12}^{LK+KLA_{12}} \\ -LA_{12}L^{-A_{22}L}) & +KA_{22} \end{pmatrix} + K(LA_{11} \\ +A_{21}^{-LA_{12}L-A_{22}L}) K \\ (LA_{11}^{-LA_{12}L+A_{21}} & (LA_{11}^{+A_{21}^{-LA_{12}L}} \\ -A_{22}L) & -A_{22}L \end{pmatrix} (-K) \\ & +LA_{12}^{+A_{22}} \end{bmatrix} \begin{bmatrix} \mathbf{y}_{1} \\ \mathbf{y}_{2} \\ \mathbf{y}_{2} \end{bmatrix}$$

$$(4-12)$$

$$\begin{bmatrix} \dot{\mathbf{y}}_{1} \\ \dot{\mathbf{y}}_{2} \end{bmatrix} = \begin{bmatrix} A_{11} - A_{12} L & -A_{11} K + A_{12} \\ & +A_{12} L K + K L A_{12} \\ & +K A_{22} \\ 0 & L A_{12} + A_{22} \end{bmatrix} \begin{bmatrix} \mathbf{y}_{1} \\ \mathbf{y}_{2} \end{bmatrix}$$
(4-13)

Introduce the vectors

 $\begin{bmatrix} B_1 \end{bmatrix} = \begin{bmatrix} A_{11} - A_{12}L \end{bmatrix}$ (4-14) $\begin{bmatrix} B_2 \end{bmatrix} = \begin{bmatrix} LA_{12} + A_{22} \end{bmatrix}$ (4-15)

and the Lyapunov equation

 $KB_2 - B_1K + A_{12} = 0.$ (4-16)

Substitution of Equations (4-14) and (4-15) into Equation (4-13) will further reduce equation (4-13) to

$$\begin{bmatrix} \dot{Y}_{1} \\ \dot{Y}_{2} \\ \dot{Y}_{2} \end{bmatrix} = \begin{bmatrix} B_{1} & K(LA_{12}+A_{22}) & & \\ & -(A_{11}+A_{12}L)K & & \\ & +A_{12} & & \\ 0 & B_{2} & & \end{bmatrix} \begin{bmatrix} Y_{1} \\ Y_{2} \\ Y_{2} \end{bmatrix}$$

$$\begin{bmatrix} \dot{Y}_{1} \\ \dot{Y}_{2} \end{bmatrix} = \begin{bmatrix} B_{1} & KB_{2} - B_{1}K + A_{12} \\ 0 & B_{2} \end{bmatrix} \begin{bmatrix} Y_{1} \\ Y_{2} \end{bmatrix}$$
(4-17)

If the Lyapunov equation is satisfied, then Equation (4-17) is even further reduced to

$$\begin{bmatrix} \dot{\mathbf{Y}}_1 \\ \vdots \\ \dot{\mathbf{Y}}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{B}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{B}_2 \end{bmatrix} \begin{bmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_2 \end{bmatrix}$$
(4-18)

Therefore, provided that an L matrix and a K matrix can be found that satisfy the algebraic Riccati equation and the Lyapunov equation, any system of first order coupled differential equations of the form

$$\begin{bmatrix} \dot{\mathbf{X}}_{1} \\ \dot{\mathbf{X}}_{2} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{X}_{1} \\ \mathbf{X}_{2} \end{bmatrix}$$

can be transformed into a decoupled system of the form

$$\begin{bmatrix} \dot{\mathbf{Y}}_1 \\ \dot{\mathbf{Y}}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{B}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{B}_2 \end{bmatrix} \begin{bmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_2 \end{bmatrix}.$$
 (4-18)

Note that this is no longer one system of differential equations, but two entirely separate systems. For a numerical solution of these systems, each system 1 and 2 can utilize whatever time step is appropriate. Since these are separate systems, the size of the time step used in one system will have no effect on the other. One advantage to such an ordering will be that CPU time on a digital computer will be reduced to a minimum, because no time steps will be smaller than that needed for a given system.

Other advantages arise from the nature of numerical error. In numerical solutions of differential equations, if the time step used is too large, then transient phenomena between iterations can become so significant as to render any solution meaningless. On the other hand, if the time step is smaller than needed, then there can be so many iterations that simple arithmetic errors generated by the computer

can become progressively larger, and degrade the quality of the solutions.

The actual choice of the size of the time steps is discussed in Section V.B.

In practice, the L matrix is calculated first, and the differential equations are solved for the decoupled variables. The K matrix is required only for the transformation of the solutions derived from the decoupled variables back into the coupled variables (in other words, K is needed only to transform Y back into X).

To compute the L matrix, let

$$A = MJQ, \qquad (4-19)$$

where MJQ is the Jordan canonical form of the A matrix. J is the diagonal matrix made up of the eigenvalues of the A matrix, M is the fundamental matrix of eigenvectors corresponding to J, and Q is the inverse fundamental matrix

$$M^{-1} = Q$$

and

 $0^{-1} = M.$

Thus,

$$\begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix} \begin{bmatrix} J_1 & 0 \\ 0 & J_2 \end{bmatrix} \begin{bmatrix} Q_{11} & Q_{12} \\ Q_{21} & Q_{22} \end{bmatrix} (4-20)$$

It is important to note that J is assembled in ascending order of the absolute values of the eigenvalues. Since

$$Q^{M} = I$$
, (4-21)

$$\begin{bmatrix} Q_{11} & Q_{12} \\ Q_{21} & Q_{22} \end{bmatrix} \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix} = \begin{bmatrix} I_1 & 0 \\ 0 & I_2 \end{bmatrix}.$$

This implies that

$$Q_{11}M_{11} + Q_{12}M_{21} = Q_{21}M_{12} + Q_{22}M_{22} = I$$
 (4-22)

$$Q_{21}M_{11} + Q_{22}M_{21} = Q_{11}M_{12} + Q_{12}M_{22} = 0,$$
 (4-23)

which leads to the result that

$$Q_{21} = -Q_{22}M_{21}M_{11}^{-1}, \qquad (4-24)$$

.

or

$$-M_{21}M_{11}^{-1} = Q_{22}^{-1}Q_{21} . \qquad (4-25)$$

Equation (4-22) implies that
$$Q_{11} + Q_{12}M_{21}M_{11}^{-1} = M_{11}^{-1}$$

$$Q_{12}M_{21}M_{11}^{-1} = M_{11}^{-1}-Q_{11}$$

$$M_{21}M_{11}^{-1} = Q_{12}^{-1}M_{11}^{-1} - Q_{12}Q_{11}.$$

Substituting Equation (4-25) yields

$$-Q_{22}Q_{21} = Q_{12}^{-1}M_{11}^{-1} - Q_{12}Q_{11}$$
$$M_{11}^{-1}-Q_{11} = -Q_{12}Q_{22}^{-1}Q_{21},$$

which yields the identity

$$M_{11}^{-1} = Q_{11} - Q_{12}Q_{22}^{-1}Q_{21} . \qquad (4-26)$$

Similarly, from Equation (4-24),

$$0 = Q_{21}M_{11} + Q_{22}M_{21}$$
(4-27)

$$= Q_{21}M_{11}M_{21}^{-1} + Q_{22}$$

$$= Q_{22}^{-1}Q_{21}M_{11}M_{21}^{-1} + I$$

$$= Q_{22}^{-1}Q_{21}M_{11} + M_{21}$$

$$0 = Q_{22}^{-1}Q_{21} + M_{21}M_{11}^{-1} .$$
(4-28)
From Equation (4-22),

$$I = Q_{21}M_{12} + Q_{22}M_{22}$$

$$Q_{21}^{-1} = Q_{21}^{-1}Q_{21}M_{12} + M_{22}$$

$$Q_{22}^{-1}Q_{21}M_{12} = Q_{22}^{-1}-M_{22}$$

 $Q_{22}^{-1}Q_{21} = Q_{22}^{-1}M_{12}^{-1} - M_{22}M_{12}^{-1}$.

Substitution of Equation (4-28) yields

$$Q_{22}^{-1} \stackrel{-1}{}_{12} - M_{22}^{-1} \stackrel{-1}{}_{12} = M_{21}^{-1} \stackrel{-1}{}_{11}^{-1}$$
$$Q_{22} - M_{22} = -M_{21}^{-11} M_{12}^{-11},$$

which leads to the identity

$$Q_{22}^{-1} = M_{22} - M_{21}M_{11}^{-1}M_{12}.$$
 (4-29)

Both Equations (4-26) and (4-29) will be used in developing Theorem 1, in which the conditions under which the algebraic Riccati eqution is satisfied are developed.

Introduce the variables R* and K*. If R* is defined as a shorthand symbol for the algebraic Riccati equation, and K* is a shorthand symbol for the Lyapunov equation, then

$$R^* = LA_{11} + A_{21} - LA_{12}L - A_{22}$$
(4-30)

and

$$K^* = KB_2 - B_1 K + A_{12}$$
(4-31)

In that case, Equation (4-13) can be restated

$$\begin{bmatrix} \dot{\mathbf{Y}}_{1} \\ \dot{\mathbf{Y}}_{2} \end{bmatrix} = \begin{bmatrix} \mathbf{B}_{1} + \mathbf{K}\mathbf{R}^{\star} & \mathbf{K}^{\star} + \mathbf{K}\mathbf{R}^{\star}\mathbf{K} \\ \mathbf{R}^{\star} & -\mathbf{R}^{\star}\mathbf{K} + \mathbf{B}_{2} \end{bmatrix} \begin{bmatrix} \mathbf{Y}_{1} \\ \mathbf{Y}_{2} \end{bmatrix}$$
(4-32)

Of course, if the algebraic Riccati equation and Lyapunov equation are satisfied, then Equation (4-14) reduces to Equation (4-18).

It follows from Equations (4-3) and (4-6) that

$$X_1 = Y_1 - Y_2 K$$
 (4-3a)

$$X_2 = -Y_1L + (I_{n_1} + LK)Y_2$$
 (4-3b)

$$Y_1 = (I_{n_1} + LK) X_1 + KX_2$$
 (4-6a)

$$Y_2 = LX_1 + X_2$$
 (4-6b)

From Equation (4-6), the following transformation holds:

$$\begin{bmatrix} x_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} I & 0 \\ L & I \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$
(4-33)

Note that this is equivalent to a transformation of the X_2 variables only. Note, if K = 0, the transformation matrix used here is the same as the inverse transformation matrix T^{-1} .

By hypothesis,

$$\begin{bmatrix} \dot{x}_{1} \\ \dot{x}_{2} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ & & \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} X_{1} \\ & \\ & \\ X_{2} \end{bmatrix}.$$
(4-34a)

Therefore,

$$X_1 = A_{11}X_1 + A_{12}X_2.$$
 (4-34b)

Substitution of Equations (4-3a), (4-3b) and (4-34a) result in

$$\dot{x}_{1} = A_{11}x_{1} + A_{12}x_{2} \qquad (4-34b)$$

$$= A_{11}Y_{1} - KA_{11}Y_{2} + A_{12}(-Y_{1}L + (I_{n_{1}}+LK)Y_{2})$$

$$= A_{11}Y_{1} - KA_{11}Y_{2} - A_{12}LY_{1} + A_{12}Y_{2} + LKA_{12}Y_{2}$$

$$= (A_{11}-A_{12}L)(Y_{1}-KY_{2}) + A_{12}Y_{2}$$

$$= (A_{11}-A_{12}L)X_{1} + A_{12}Y_{2}$$

$$\dot{x}_{1} = B_{1}X_{1} + A_{12}Y_{2}$$

It is already known that if the algebraic Riccati and Lyapunov equations are satisfied, then

$$\dot{Y}_2 = B_2 Y_2$$
 (4-18a)

Therefore, the transformation (4-33) reduces to

$$\begin{bmatrix} \dot{\mathbf{x}}_{1} \\ \dot{\mathbf{y}}_{2} \end{bmatrix} = \begin{bmatrix} B_{1} & A_{12} \\ 0 & B_{2} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{y}_{2} \end{bmatrix}$$
(4-35)

where

$$\begin{bmatrix} B_1 & A_{12} \\ B_1 & B_2 \end{bmatrix} = \begin{bmatrix} I & 0 \\ L & I \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} I & 0 \\ -L & I \end{bmatrix}.$$
(4-36)

A. Computing the L Matrix

A practical means of computing the L matrix must be found. Fortunately, a means for doing this is suggested by Anderson [1], which is repeated here.

<u>Theorem 1</u>: The L matrix satisfies the algebraic Riccati equation if and only if

1)
$$M_{11}$$
 is full rank
2) $L = -M_{21}M_{11}^{-1} = Q_{22}^{-1}Q_{21}$ (4-37)

<u>Proof</u>: Assume first that Equation (4-11) is satisfied. Rewrite it as

 $L(A_{11}-A_{12}L) = -A_{21}+A_{21}L$ and let $(A_{11}-A_{12}L)$ have the Jordan form XGX⁻¹. Setting Y = -LX, it follows that

> $A_{11} - A_{12}L = XGX^{-1}$ $A_{21} - A_{22}L = -LXGX^{-1}$.

Postmultiply by X to obtain

$$A_{11}X + A_{12}Y = XG$$
$$A_{21}X + A_{22}Y = YG$$

$$A\begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} X \\ Y \end{bmatrix} G$$

or

$$A = \begin{bmatrix} X \\ Y \end{bmatrix} G \begin{bmatrix} X \\ Y \end{bmatrix}^{-1}$$

Thus, the diagonal elements of the Jordan form G are $\ensuremath{\mathtt{n}}\xspace_1$ of the n eigenvalues of A, and

are n, corresponding eigenvectors of A. Also, X is full rank, completing the first half of the proof.

For the second half of the proof, recall Equation (4-9)

$$Y = T^{-1}ATY$$

or

$$\begin{bmatrix} \dot{\mathbf{Y}}_{1} \\ \dot{\mathbf{Y}}_{2} \end{bmatrix} = \begin{bmatrix} \mathbf{B}_{1} + \mathbf{K}\mathbf{R}^{*} & \mathbf{K}^{*} + \mathbf{K}\mathbf{R}^{*}\mathbf{K} \\ \mathbf{R}^{*} & -\mathbf{R}^{*}\mathbf{K} + \mathbf{B}_{2} \end{bmatrix} \begin{bmatrix} \mathbf{Y}_{1} \\ \mathbf{Y}_{2} \end{bmatrix},$$

where again,

 $R^* = LA_{11} + A_{21} - LA_{12}L - A_{22}L.$ (4-30)

It will be demonstrated that the Lyapunov equation need not be satisfied for this theorem to be true. In other words, K can assume any value, including

$$K = 0$$
,

then the transformation matrices T and T^{-1} , respectively, reduce to

$$\mathbf{T}^{\star} = \begin{bmatrix} \mathbf{I}_{n_{1}} & \mathbf{0} \\ -\mathbf{L} & \mathbf{I}_{n_{2}} \end{bmatrix}$$

and

$$\mathbf{T}^{\star-1} = \begin{bmatrix} \mathbf{I}_{n_1} & \mathbf{0} \\ \mathbf{I}_{L} & \mathbf{I} \end{bmatrix} \quad \mathbf{0}$$

For the purposes of this theorem, K will equal 0, because this will make the proof easier without affecting its validity. Thus,

$$\mathbf{T}^{\star-1}_{\mathbf{A}\mathbf{T}}^{\star} = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{L} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{A}_{1\mathbf{I}} & \mathbf{A}_{12} \\ \mathbf{A}_{2\mathbf{1}} & \mathbf{A}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ -\mathbf{L} & \mathbf{I} \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{A}_{1\mathbf{I}}^{-\mathbf{A}_{12}} & \mathbf{A}_{22} \\ \mathbf{A}_{1\mathbf{I}}^{-\mathbf{A}_{12}} & \mathbf{A}_{12} \\ \mathbf{A}_{1\mathbf{I}}^{+\mathbf{A}_{2\mathbf{I}}} & \mathbf{A}_{22}^{+\mathbf{L}\mathbf{A}_{12}} \\ -\mathbf{L}\mathbf{A}_{12}^{\mathbf{L}-\mathbf{A}_{22}\mathbf{L}} \end{bmatrix}$$

$$\mathbf{T}^{*-1}\mathbf{A}\mathbf{T}^{*} = \begin{bmatrix} \mathbf{B}_{1} & \mathbf{A}_{12} \\ \mathbf{L}^{\mathbf{A}_{11}+\mathbf{A}_{21}} & \mathbf{B}_{2} \\ -\mathbf{L}^{\mathbf{A}_{12}\mathbf{L}-\mathbf{A}_{22}\mathbf{L}} \end{bmatrix}$$

Suppose L = $-M_{21}M_{11}^{-1} = Q_{22}Q_{21}^{-1}$. Then, we need to show that as a result,

$$LA_{11} + A_{21} - LA_{12}L - A_{22}L = 0.$$
(4-11)
If
$$L = -M_{21}M_{11}^{-1} = Q_{22}^{-1}Q_{21}$$

and

 $\dot{Y} = T^{-1}ATY$

and

$$A = MJQ$$

and

K = 0,

then, write A in Jordan form and complete the product so that

$$= \begin{bmatrix} \mathbf{I}_{n_{1}} & \mathbf{0} \\ -\mathbf{M}_{21}\mathbf{M}_{11}^{-1} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{M}_{11} & \mathbf{M}_{12} \\ \mathbf{M}_{21} & \mathbf{M}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{J}_{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{J}_{2} \end{bmatrix} \begin{bmatrix} \mathbf{Q}_{11} & \mathbf{Q}_{12} \\ \mathbf{Q}_{21} & \mathbf{Q}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{I}_{n_{1}} & \mathbf{0} \\ -\mathbf{Q}_{22}\mathbf{Q}_{21} & \mathbf{I}_{n_{2}} \end{bmatrix}.$$

(4 - 38)

Substitution of Equations (4-26) and (4-29) yields

$$\mathbf{T}^{*-1} \mathbf{M} \mathbf{J} \mathbf{Q} \mathbf{T}^{*} = \begin{bmatrix} \mathbf{I}_{n_{1}} & \mathbf{0} \\ -\mathbf{M}_{21} \mathbf{M}_{11}^{-1} & \mathbf{I}_{n_{2}} \end{bmatrix} \begin{bmatrix} \mathbf{M}_{11} & \mathbf{M}_{12} \\ \mathbf{M}_{21} & \mathbf{M}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{J}_{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{J}_{2} \end{bmatrix} \begin{bmatrix} \mathbf{Q}_{11} - \mathbf{Q}_{12} \mathbf{Q}_{22}^{-1} \mathbf{Q}_{21} & \mathbf{Q}_{12} \\ \mathbf{0} & \mathbf{Q}_{22} \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{M}_{11} & \mathbf{M}_{12} \\ \mathbf{0} & -\mathbf{M}_{21} \mathbf{M}_{11}^{-1} \mathbf{M}_{12} \\ +\mathbf{M}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{J}_{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{J}_{2} \end{bmatrix} \begin{bmatrix} -\mathbf{Q}_{12} \mathbf{Q}_{22}^{-1} \mathbf{Q}_{22} & \mathbf{Q}_{12} \\ \mathbf{0} & \mathbf{Q}_{22} \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{M}_{11} & \mathbf{M}_{12} \\ \mathbf{0} & \mathbf{Q}_{22} \end{bmatrix} \begin{bmatrix} \mathbf{J}_{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{J}_{2} \end{bmatrix} \begin{bmatrix} \mathbf{M}_{11}^{-1} & \mathbf{Q}_{12} \\ \mathbf{0} & \mathbf{Q}_{22} \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{M}_{11} \mathbf{J}_{1} & \mathbf{M}_{12} \mathbf{J}_{2} \\ \mathbf{0} & \mathbf{Q}_{22}^{-1} \mathbf{J}_{2} \end{bmatrix} \begin{bmatrix} \mathbf{M}_{11}^{-1} & \mathbf{Q}_{12} \\ \mathbf{0} & \mathbf{Q}_{22} \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{M}_{11} \mathbf{J}_{1} & \mathbf{M}_{12} \mathbf{J}_{2} \\ \mathbf{0} & \mathbf{Q}_{22}^{-1} \mathbf{J}_{2} \end{bmatrix} \begin{bmatrix} \mathbf{M}_{11}^{-1} & \mathbf{Q}_{12} \\ \mathbf{0} & \mathbf{Q}_{22} \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{M}_{11} \mathbf{J}_{1} & \mathbf{M}_{12} \mathbf{J}_{2} \\ \mathbf{0} & \mathbf{Q}_{22}^{-1} \mathbf{J}_{2} \end{bmatrix} , \qquad (4-39)$$

completing the proof.

A few observations are in order here:

1) Inspection of Equation (4-38) will show that because the left column of the T matrix and the bottom row of the T^{-1} matrix have no K term in the first place, then the lower left entry in the product matrix (4-39) is independent of K. In fact, this entry, which is equal to zero, <u>is</u> the algebraic Riccati equation for

 $L = -M_{21}M_{11}^{-1} = Q_{22}^{-1}Q_{21}.$

The same result would have been produced for any K; however, the other entries in the product matrix (4-39), which were not used in this proof, would have been much more complicated. Hence, the decision to set K equal to zero.

2) The M_{11} matrix is part of the M matrix, which in turn, is the fundamental matrix of eigenvectors corresponding to the diagonal J matrix of eigenvalues. In practice, when solving the point-kinetics equations, the eigenvalues of the J₁ matrix are always approximately equal to the negatives of the decay constants of each of the 6 delayed neutron groups. Since these eigenvalues are real and distinct, the M_{11} matrix is always full rank, which is one of the prerequisites for Theorem I.

3) The A matrix is precisely defined. The M, J, and Q matrices are generated from the A matrix by means of

subroutines in the PORT Library. Apparently, the matrices thus generated are not absolutely accurate, because the algebraic Riccati equation does not exactly equal zero when the matrix L from the equation

$$L = -M_{21}M_{11}^{-1} = Q_{22}^{-1}Q_{21}$$

is substituted into it. Rather, this value for L is only an excellent first approximation. However, there is an iterative technique, which will later be outlined, that generates an L matrix to an extremely high degree of accuracy. In practice, about 6 iterations are required. The K matrix is also computed by means of an iterative technique.

4) One corollary of Theorem 1 is that

$$B_2 = Q_{22}^{-1} J_2 Q_{22}. \tag{4-40}$$

This means that B₂ can be computed without the L matrix, even though it was originally defined in terms of L. This is a useful fact which facilitates the computation of L, as will be seen.

5) In practice, there are no complex eigenvalues (and therefore, no complex eigenvectors) under any circumstances encountered in this program. Also, for reasons that will be explained later, the A matrix is a 7x7 matrix which is decoupled into a system consisting of six slow variables and one fast variable. Consequently, the A₁₁ matrix (as well as the M_{11} and Q_{11} matrices) is a 6x6 matrix, the A_{22} matrix (and the M_{22} and the Q_{22} matrices) is 1x1, and the A_{12} and A_{21} matrices are, respectively, 6x1 and 1x6. Also, the L matrix is 1x6 and the K matrix is 6x1. The fact that there are no complex numbers here and that some of the matrices have only one row or column, greatly facilitates computation.

6) In another theorem which will be repeated here without proof, Anderson [1] shows that for a given two-time-scale system there is only one decoupling matrix L. In another theorem, which he cites, it is proven that provided B_1 and B_2 have no common eigenvalues, the situation which turns out always to be the case in this program, there is likewise only one K matrix.

7) In developing the background of the two-time-scale decoupling algorithm, it was both necessary to repeat many of the steps found in Anderson's [1] paper and to complete other steps he left incomplete or unstated. This is because in developing the proof of Theorem 1 and the background of it, Anderson utilized several equations and identities without proof. He seems to have written his paper more to explain how to use a decoupling algorithm than to explain why it is mathematically valid. This thesis is the only known work in which a full background is to be found.

To compute the L matrix, first set

$$L_0 = Q_{22}^{-1}Q_{21}$$
 (4-41)
i = 0.

The Q submatrices are used instead of the $-M_{21}$ and M_{11}^{-1} submatrices because the M_{11}^{-1} submatrix is a 6x6 matrix and the Q_{22}^{-1} submatrix is only 1x1. Use of the one instead of the other greatly facilitates computation.

Define the residual matrix

 $R_0 = L_0 A_{11} + A_{21} - L_0 A_{12} L_0 - A_{22} L_0$

and evaluate its Euclidean norm. (Since R_i is only 6xl, this is also particularly easy.) If

 $||\mathbf{R}_{i}|| \leq \varepsilon$,

then stop. The L matrix is already well-defined. In this program,

 ϵ = 1.0 x 10^{-6} was used.

If more iterations are needed, define the correction matrix D_i as follows:

 $(A_{22}+L_iA_{12})D_i = R_i,$

or

 $B_2 D_i = R_i$

and

$$D_i = B_2^{-1} R_i.$$

Since B_2 and B_2^{-1} are both 1x1, this is also an easy operation. Additionally, since $B_2 \xrightarrow{exactly}$ equals $Q_{22}^{-1}J_2Q_{22}$, it is not necessary to use first approximations of L in order to generate first approximations for B_2 . If B_2 were only approximately defined, then this would induce errors in successive computations of L; which would have the effect of increasing the number of iterations necessary to achieve convergence.

In practice, since Q_{22}^{-1} , Q_{22} , B_2^{-1} and B_2 are all lxl,

$$Q_{22}^{-1} = \frac{1}{Q_{22}}$$

 $B_2^{-1} = \frac{1}{B_2}$

and

$$B_2 = Q_{22}^{-1}J_2Q_{22}$$
$$= \frac{JQ_{22}}{Q_{22}}$$

and the elegant result that

$$B_2 = J_2$$

(4 - 42)

is achieved. Of course, J₂, like B₂, is 1x1.

Also, because $B_2^{-1} = 1/B_2$,

$$D_{i} = B_{2}^{-1}R_{i}$$

= R_{i}/B_{2} . (4-43)

To continue with the description of the iteration process, let

$$L_{i+1} = L_i + D_i$$
.

Then recompute the residual matrix R_{i} ,

$$R_{i} = L_{i}A_{11} + A_{21} - LA_{12}L_{i} - A_{22}L_{i}$$
(4-44)

and evaluate its Euclidean norm. If it is sufficiently small, stop; if not, iterate further. Note that Equation (4-44) is the algebraic Riccati equation, which, it will be remembered, is supposed to equal zero; hence, the requirement that its Euclidean norm be very small.

To summarize, rewrite the above as:

Algorithm 1:

- Obtain an initial approximation L₀ from Equation (4-41).
- 2) Evaluate

 $R_{i} = L_{i}A_{11} + A_{21} - LA_{12}L - A_{22}L;$ and stop if $||R_{i}|| \le \varepsilon.$ 3) Evaluate

 $D_{i} = R_{i}/B_{2}$ and let $L_{i+1} = L_{i}+D_{i}.$ 4) Let

> i = i+1and go to 2).

B. Computing the K Matrix

Restate the decoupled differential equations

$$\begin{bmatrix} \dot{\mathbf{Y}}_1 \\ \dot{\mathbf{Y}}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{B}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{B}_2 \end{bmatrix} \begin{bmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_2 \end{bmatrix}$$
(4-18)

Since B₁ and B₂ are defined only in terms of A and L, it has thus far been unnecessary to compute the K matrix. Furthermore, the decoupled systems of differential equations of Equation (4-18) can be solved, also without invoking K.

The only reason to compute the K matrix is to transform the solutions for the Y variables into solutions for the X-variables, via the T matrix (Equation (4-4)). In practice, only the Y_2 variable will be transformed into X_2 , because the Y_2 and X_2 variables describe reactor power, and it is only reactor power that is of interest. The Y_1 variables describe the behavior of the six delayed-neutron precursors. While they are very important for reactor power computations, once reactor power is computed, they are of no further interest and are not utilized in program output. Hence, it is not necessary to transform them into the X_1 variables.

To compute the K matrix, utilize Algorithm 2.

Algorithm 2:

- 1) Set $K_0 = 0$ $D_i = 0$ $R_0 = -A_{12}$ i = 0.
- 2) Solve
 - $D_i = R_i/B_2$.
 - Let
 - $K_{i+1} = K_i + D_i$.
- 3) Evaluate
 - $R_{i+1} = -K_{i+1}B_2 + B_1K A_{12}.$ (4-45) Stop if $||R_{i+1}|| \le \varepsilon.$
- 4) Set i = i+1 and go to 2.

A few observations are also in order here:

 Unlike Algorithm 1, the K, D, and R matrices in Algorithm 2 are 6xl instead of 1x6.

2) As in Algorithm 1, $\varepsilon = 1.0 \times 10^{-6}$.

3) In computing the R matrix of Algorithm 2, first a preliminary estimate of K is made, then substituted into the Lyapunov equation. However, when using the standard form of the Lyapunov equation, Equation (4-16), it was found that in successive iterations, $||R_i||$ diverges instead of converging toward zero. Upon inspection, the reason becomes apparent. In this program,

$$B_2 = J_2$$
, (4-42)

where J_2 is the eigenvector of the fast mode. Typically

 $-70.0 \le J_2 \le -15.0$

(again, J_2 is 1x1). The B_1 matrix is a 6x6 diagonal matrix made up approximately of the negatives of the 6 delayedneutron precursors. Typical ranges are from -0.005 to -3.00.

Thus, all the entries in either the B₁ or the B₂ matrices are negative numbers. Furthermore, all the entries in the K matrix are also negative numbers. Restate the standard form of the Lyapunov equation

 $R_{i} = K_{i+1}B_{2} - B_{1}K_{i+1} + A_{12}.$ (4-45)

If K is too large, then the residual R_i tend to become a matrix made up of only positive entries. This is because if K is negative, the first term of the Lyapunov equation will be positive and the second term negative. The third term A_{12} is always positive. It is comprised of the six delayedneutron constants, which are always positive. Since B_2 is much larger than B_1 , the first term will dominate the second term and the residual as a whole will be positive.

The residual matrix R_i is then used to compute the correction matrix D_i via the equation

 $D_i = R_i/B_2$.

Since B_2 is always a negative number, it follows that if R_i is a positive matrix, then D_i is a negative one.

Then a new K matrix, K_{i+1}, is computed via the equation

 $K_{i+1} = K_i + D_i$.

Since the K_i matrix is already a negative matrix, addition of another negative matrix to it will result in a yet larger K matrix, all of whose elements are larger than previously. When the new residual matrix R_{i+1} is computed, it will be larger than the preceding residual matrix R_i . In other words,

 $||R_{i+1}|| > ||R_i||,$

which indicates that divergence, not convergence, is taking

place. The same process will occur, albeit in a different direction, if the initial estimate of K is too small.

The Lyapunov equation in standard form is written

$$0 = KB_2 - B_1 K + A_{12} . (4-16)$$

However, since it equals zero, it can also be expressed in the form

$$0 = -KB_2 + B_1K - A_{12}. \tag{4-46}$$

Now the situation is much different. For if

$$R_{i+1} = -K_{i+1}B_2 + B_1K_{i+1} - A_{12}, \qquad (4-45)$$

then, for instance, if K is too large, R_{i+1} will now tend to be a matrix made up of negative entries. The correction matrix D_i will then tend to be a matrix made up of positive entries, (since the division of two negative numbers results in a positive number) and the new K_{i+1} matrix will tend to become smaller. This will result in R_{i+2} now being smaller than R_{i+1} , or

 $||R_{i+1}|| < ||R_i||,$

which indicates that finally K is converging toward its true value.

In general, the following principle can be stated. Consider either form of the Lyapunov equation.

$$R_{i+1} = K_{i+1}B_2 - B_1K_{i+1} + A_{12}$$
(4-47)

or

$$R_{i+1} = -K_{i+1}B_2 + B_1K_{i+1} - A_{12}$$
 (4-45)

If it is known that K is predominantly a positive matrix, use Equation (4-47). When K is negative, use Equation (4-45). When in doubt, experimental runs will have to be made.

In this program, it is known that K is a negative matrix, since K approximately equals $-A_{12}$, and all of the entries of A_{12} are always positive. Hence, Equation (4-45) will always be the equation of choice in determining the K matrix.

C. The Choice of Slow and Fast Variable

The equations that are solved by decoupling are the point-kinetics equations. The A matrix is a 7x7 matrix featuring six equations for the six groups of delayed-neutron precursors, and one equation for the prompt response. Since the delayed precursors have half lives of up to several minutes, it would be expected that the slow mode should contain all the delayed precursors and the fast mode only the prompt response. This turns out to be the case, but there is a means of verifying this.

Assume that the columns of M are normalized so that each

is of length 1, and define the slow mode decoupling ratio $\rho_{\rm g}$ and the fast mode decoupling ratio $\rho_{\rm f}$

$$\rho_{s} = \frac{||M_{21}||}{||M_{11}||} \tag{4-48}$$

and

$$\rho_{f} = \frac{||M_{12}||}{||M_{22}||} \tag{4-49}$$

To generate a M matrix for test purposes, a run was made for U-235 fuel, with a step reactivity input of 10 cents. Table 1 shows the resulting M matrix, and Table 2 shows the same matrix with columns normalized to a length of 1. (In this case, it actually made very little difference whether the columns were normalized or not, because the seventh column of the M matrix - the one that contains M_{12} and M_{22} - was already of unit length.)

With an ordering of six slow variables and one fast variable, the M_{11} submatrix is a 6x6 matrix occupying the first six rows of the first six columns, the M_{21} submatrix is a 1x6 matrix in the bottom row of M, the M_{22} submatrix is the single entry in the lower right corner, and the M_{12} submatrix is a 6x6 latrix in the right-hand M matrix. Under this ordering,

of point-kinetics equations, with U-235 fuel								
-5.8428212E-¢3	-2.2450656E-¢2	1.138648	-6.1259083E-¢2					
5.5526220E-¢3	3.1158078E-¢2	-4.7610782E-2	-1.119222					
5.5012584E-¢2	-1.151598	-0.1298485	-0.1955647					
0.6542489	0.6703086	0.6762639	0.6739961					
0.1145651	0.1106563	0.1093184	0.1098212					
-0.7772868	-0.3515190	-0.2937855	-0.3132723					
-0.3808326	-0.3190138	-0.3014579	-0.3078748					

Table 1. Inverse eigenvector matrix of coefficient matrix of point-kinetics equations, with U-235 fuel

-2.1475744E-\$3	-5.8924372E-\$4	-2.3943800E-\$4
1.9070993E-¢3	5.0920382E-\$4	2.0575027E-\$4
1.6006008E-¢2	-1.0369849E-¢3	1.6115000E-¢3
0.6197168	0.5076421	0.3722187
0.1248162	0.1994342	-0.9808449
0.4277675	5.7167120E-¢2	2.083645E-¢2
-0.6933042	0.2852145	7.4262023E\$2

$$||M_{11}|| = 2.449288031$$

 $||M_{12}|| = 0.491622207$
 $||M_{21}|| = 0.042813149$
 $||M_{22}|| = 0.8712999$

and

$$\rho_{f} = \frac{||M_{12}||}{||22||}$$
$$= 0.564239945$$
$$\rho_{s} = \frac{||M_{21}||}{||M_{11}||}$$

= 0.017479834.

Since $\rho_{\rm f}$ is very large compared to $\rho_{\rm s},$ the system is considered "strongly coupled".

When there are five variables in the slow mode and 2 in the fast, (s = 5, f = 2)

 $\rho_{f} = 0.580217398$

 $\rho_{s} = 0.010980874.$

For s = 4, f = 3,

 $\rho_{f} = 0.60220452$

 $\rho_{\rm s} = 0.01743454.$

For increasingly larger fast groups, $\rho_{\mbox{f}}$ will start to

decrease, but on the other hand, ρ_s will start increasing rapidly, and the system will cease to be strongly coupled.

All of the three orderings above are strongly coupled due to the fact that $\rho_f \gg \rho_s$, but when s = 6 and f = 1, ρ_f is minimized and ρ_s nearly so. According to Anderson [1], there are several criteria that provide an indication as to how to order the variables. One can choose to minimize $||M_{21}||$, or $||M_{12}||$, or ρ_f , or ρ_s . When f = 1, $||M_{12}||$ is definitively minimized, $||M_{21}||$ and ρ_s nearly so, and ρ_f slightly so. For these reasons, the seven variables of the point-kinetics equations are ordered such that the six delayed-neutron precursor groups are placed in the slow mode, and the one variable for the prompt response placed in the fast mode.

Another advantage to this ordering is that because some of the vectors used are 1x6 or 6x1 or even 1x1, computations are greatly facilitated, for reasons outlined earlier.

D. Solution of the Point-Kinetics Equations Utilizing Two-Time-Scale Decoupling Methods

From Hetrick et al. [8], the point-kinetics equations for six groups of delayed-neutron precursors without an external neutron source are expressed as

$$\frac{d}{dt} \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \\ c_{4} \\ c_{5} \\ c_{6} \\ n \end{bmatrix} = \begin{bmatrix} -\lambda_{1} & 0 & 0 & 0 & 0 & \beta_{1}/\Lambda \\ 0 & -\lambda_{2} & 0 & 0 & 0 & \beta_{2}/\Lambda \\ 0 & 0 & -\lambda_{3} & 0 & 0 & 0 & \beta_{3}/\Lambda \\ 0 & 0 & 0 & -\lambda_{4} & 0 & 0 & \beta_{4}/\Lambda \\ 0 & 0 & 0 & 0 & -\lambda_{5} & 0 & \beta_{5}/\Lambda \\ 0 & 0 & 0 & 0 & -\lambda_{5} & 0 & \beta_{5}/\Lambda \\ 0 & 0 & 0 & 0 & 0 & -\lambda_{6} & \beta_{6}/\Lambda \\ \lambda_{1} & \lambda_{2} & \lambda_{3} & \lambda_{4}, \lambda_{5} & \lambda_{6} & \frac{\rho - \beta}{\Lambda} \end{bmatrix} \begin{bmatrix} c_{1} \\ c_{2} \\ c_{3} \\ c_{4} \\ c_{5} \\ c_{6} \\ n \end{bmatrix}, \quad (4-50)$$

where

- C, is the delayed-neutron precursor number for the jth group of precursors
- n is reactor power
- $\boldsymbol{\lambda}_{,}$ is the delayed-neutron decay constant for the j th group
- β_{i} is the delayed-neutron fraction for the jth group
- β is the total delayed-neutron fraction for all groups
- Λ is neutron generation time
- p is reactivity.

Note that the 7x7 matrix in Equation (4-50) is the A matrix. Another way of expressing Equation (4-50) is

$$\frac{dC_{j}}{dt} = \frac{\beta_{i}}{\Lambda} n - \lambda_{j}C_{j} \qquad (4-5la)$$

$$\frac{dn}{dt} = \frac{\rho - \beta}{\Lambda} n + \Sigma_{j}\lambda_{j}C_{j} \qquad (4-5lb)$$

The numerical method used to solve the equations is the method of finite differences. As developed in this program, Equations (4-51a) and (4-51b) will be solved only for transient quantities. Steady-state quantities will be computed once, and added to transient quantities when total output is desired.

Accordingly, restating Equation (4-51a) as

$$\frac{d}{dt}(C_{i0}+\delta C_{i}) = \frac{\beta_{i}}{\Lambda} (n_{0}+\delta n) - \lambda_{i}(C_{i0}+\delta C_{i}), \qquad (4-52)$$

where

C_{jo} is steady-state precursor number δC_j is transient precursor number n_o is steady-state reactor power δn is transient reactor power.

Equation (4-52) is further developed as follows.

The steady-state terms can be separated from Equation (4-52). Thus,

$$\frac{d}{dt}(C_{io}) = \frac{\beta_j}{\Lambda}(n_o) - \lambda_j(C_{jo}). \qquad (4-53)$$

Since C is a steady-state variable, it does not change with respect to time, and

$$\frac{d}{dt}(C_{jo}) = 0.$$

Therefore,

$$0 = \frac{\beta_j^n o}{\Lambda} - \lambda_j c_{jo},$$

which leads to the important result that

$$\lambda_{j}C_{j0} = \frac{\beta_{j}n_{0}}{\Lambda}$$

$$C_{j0} = \frac{\beta_{j}n_{0}}{\Lambda\lambda_{j}} \qquad (4-54)$$

Solving for the transient variables yields

$$\frac{\mathrm{d}}{\mathrm{d}t}(\delta C_{j}) = \frac{\beta_{j}\delta n_{i}}{\Lambda} - \lambda_{j}\delta C_{j},$$

or, using a finite difference numerical method,

$$(\delta C_{j}(i+1)-\delta C_{ij})/h = \frac{\beta_{j}\delta n_{i}}{\Lambda} - \lambda_{j}\delta C_{ij},$$

where C_{ij} is the precursor number from the previous iteration, $C_j(i+1)$ is the precursor number to be computed during the current iteration, and h is the time step used. This method is used in industry and will be used here too. Thus,

$$\delta C_{j}(i+1) = h\left(\frac{\beta_{i}\delta n_{i}}{\Lambda} - \lambda_{i}\delta C_{ij} + \delta C_{ij}\right)$$
(4-55)

Similarly,

$$\delta_{n_{i+1}} = h(\frac{1}{\Lambda}(\rho_{0}\delta n + \delta \rho n_{0} + \delta \rho \delta n_{i} - \beta \delta n_{i}) + \Sigma_{j}\lambda_{j}\delta C_{ij}) + \delta n_{i}, \qquad (4-56)$$

where

 ρ_{o} is the steady-state reactivity (usually zero)

- δρ is the transient reactivity
- j and i are subscripts referring, respectively, to the six delayed-neutron energy groups and to the current time step

Note that since these equations are not decoupled, the time step h is the same in each equation.

Recall Equation (4-3),

X = TY(4-3)

In terms of the point-kinetics equations, this is equivalent to

 $\begin{bmatrix} C \\ n \end{bmatrix} = \begin{bmatrix} I_n & -K \\ -L & (I_n + LK) \end{bmatrix} \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix}.$ (4-57)

Since K is a 6xl matrix and L is 1x6, the lower right hand entry in the transformation matrix is 1xl and

 $I_{n_2} + LK = 1.0 + \Sigma_j L_j K_j.$

Also, the upper left hand entry in the transformation matrix is a 6x6 identity matrix.

Accordingly, restate Equation (4-57),

δC1]	[1	0	0	0	0	0		-K1	δ	⁷ 1
δC ₂		0	1	0	0	0	0		-K2	63	2
δC3		0	0	l	0	0	0		-ĸ ₃	63	3
δC4	=	0	0	0	1	0	0		-ĸ4	63	4
δC ₅		0	0	0	0	1	0		-ĸ ₅	63	5
δC ₆		0	0	0	0	0	1		-K6	63	6
δn		1	0 1 0 0 0 -L ₂	-L ₃	-L ₄	-1 ₅	-1 ₆	(1.0+	$-K_{1}$ $-K_{2}$ $-K_{3}$ $-K_{4}$ $-K_{5}$ $-K_{6}$ $i^{L}i^{K}i^{)}$	63	7.

(4 - 58)

The only term here that is of interest in program output is the reactor power term δn . The δC_i terms are of no interest. However, their analogues, the Y_i (1-6) terms, are of interest because they are multiplied by the $-L_i$ terms to obtain δn .

Since the C terms are of no interest, restate Equations (4-57) and (4-58) to obtain

$$\delta n = \begin{bmatrix} -L & (I_{n_2} + LK) \end{bmatrix} \begin{bmatrix} \delta Y_1 \\ \delta Y_2 \end{bmatrix}$$
(4-59)

and

$$\delta n = \begin{bmatrix} -L_1 & -L_2 & -L_3 & -L_4 & -L_5 & -L_6 & (1.0 + \Sigma_j L_j K_j) \end{bmatrix} \begin{bmatrix} \delta Y_1 \\ \delta Y_2 \\ \delta Y_3 \\ \delta Y_4 \\ \delta Y_5 \\ \delta Y_6 \\ \delta Y_7 \end{bmatrix}$$

(4 - 60)

The Y_i terms themselves are obtained by solving Equation (4-18), which is repeated here.

$$\begin{bmatrix} \dot{\mathbf{Y}}_1 \\ \dot{\mathbf{Y}}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{B}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{B}_2 \end{bmatrix} \begin{bmatrix} \mathbf{Y}_1 \\ \mathbf{Y}_2 \end{bmatrix}$$
(4-18)

or

$$\begin{bmatrix} \mathbf{Y}_1 \end{bmatrix} = \begin{bmatrix} \mathbf{B}_1 \mathbf{Y}_1 \end{bmatrix}$$
(4-61)
$$\begin{bmatrix} \mathbf{Y}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{B}_2 \mathbf{Y}_2 \end{bmatrix}.$$
(4-62)

These equations will be solved by a finite-differences method. However, since they are decoupled, they can and will use different size time steps.

For Equation (4-61), use time step h_s ; for Equation (4-62), use time step h_f . For reasons that will be explained in Section V.B, the time steps

 $h_{s} = 0.2 \text{ sec}$ $h_{f} = 0.001 \text{ sec}$

were chosen.

Restating Equation (4-18) as

$$\frac{\mathrm{d}}{\mathrm{dt}} \begin{bmatrix} \mathbf{Y}_{10} & + & \delta \mathbf{Y}_1 \\ \mathbf{Y}_{20} & + & \delta \mathbf{Y}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{B}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{B}_2 \end{bmatrix} \begin{bmatrix} \mathbf{Y}_{10} & + & \delta \mathbf{Y}_1 \\ \mathbf{Y}_{20} & + & \delta \mathbf{Y}_2 \end{bmatrix},$$

implies

$$\frac{\delta Y_{1}(i+1) - \delta Y_{1i}}{h_{s}} = B_{1} \delta Y_{1i},$$

$$\delta Y_{1}(i+1) = h_{s} B_{1} \delta Y_{1} + \delta Y_{1i}.$$

Similarly,

 $\delta Y_2(i+1) = h_f B_2 \delta Y_{2i} + \delta Y_{2i}.$

These solutions are then substituted back into Equation (4-59) to obtain reactor power.

The preceding analysis has discussed linear systems of differential equations; that is, systems of the form

 $\dot{X} = AX,$ (4-1)

where each element of the A matrix is a constant.

Such systems represent either steady-state systems with no transient phenomena or systems in which the only transient phenomena are caused by natural processes. Such a system cannot be purposefully driven, or controlled, to produce desired changes. However, in the point-kinetics equations (Equation 4-50), the element in the (7,7)th position is

 $\frac{\rho-\beta}{\Lambda}$.

Because the reactivity ρ is not constant but varies, Equation (4-50) represents a nonlinear system, not a linear one.

There are two ways of solving such a system. The first is to treat ρ as a constant. Doing this will mean that every time ρ changes, the A matrix changes, and will have changed eigenvalues and eigenvectors. Because of this, the L and K matrices also change. In fact, treating ρ as a constant will mean that every time ρ changes it will be necessary to run the entire two-time-scale matrix decoupling algorithm in order to recompute the L and K matrices.

For many reasons this is unsatisfactory. In the two-time-scale matrix decoupling algorithm, the original variables are transformed into their decoupled analogues via a transformation matrix, the L and K matrices are computed, the differential equations are solved, and then the decoupled variables are transformed back into the original variables. From here, feedback and control system effects are determined and a new ρ calculted.

Since so many steps are needed for the calculation of ρ , and from this calculation further values for ρ are computed, there is a significant possibility of progressive arithmetic

error if the two-time-scale matrix decoupling algorithm is called every time the value of ρ changes. Further, the twotime-scale matrix decoupling algorithm is a lengthy algorithm which calls on two PORT library subroutines in order to work. This defeats one of the purposes of using the two-time-scale matrix decoupling algorithm, which is the reduction of CPU time by means of the larger time steps that can be used. Last, it is inelegant to frequently use such a long algorithm, if valid results can be obtained by not doing so.

The second way of solving a nonlinear system is to remove the nonconstant variable from the A matrix and rewrite Equation (4-1) as a system of differential equations with a driving function. By this means, the A matrix again contains only constant terms; the nonconstant variable is now located outside the A matrix and is the driving function.

Equation (4-1) is rewritten as

 $\dot{X} = AX + Bu, \qquad (4-63)$

where Bu is the driving function.

Hetrick, Girijashankar et al. [8] state that the dynamics of nonlinear systems can be assumed to be well-represented by those of dynamic systems. As long as any changes do not vary greatly from the steady-state conditions, a nonlinear system can be approximated to a high degree of accuracy by a linear system with a driving function. In the program written to support this thesis, it is also possible to use a

linear system with a driving function to approximate a nonlinear system in which there are small changes from initial conditions. The method by which this is done will be outlined later.

To develop the decoupled form of the point-kinetics equations with driving function, first the power equation of the point-kinetics equations in numerical form, Equation (4-56), is restated:

$$\delta n_{i+1} = h \left(\frac{1}{\Lambda} (\rho_0 \delta n + \delta \rho n_0 + \delta \rho n_i \right)$$

- $\beta \delta n_i + \Sigma_j \lambda_j \delta C_{ij}$
+ $\delta n_i.$ (4-56)

With little loss of accuracy, the $\delta \rho \delta n_i$ term can be dropped, because it is small compared to the others. This will be done, because the term $\delta \rho \delta n_i$ contains the variable δn_i , which is one of the two variables solved for in the pointkinetics equations. Since the purpose for having a driving function is to separate the variable $\delta \rho$ from the A matrix, the driving function will be a function of $\delta \rho$. It is important that the driving function not contain any of the variables that appear in the point-kinetics equations. The reason is that if it does, the system of coupled pointkinetics equations cannot be decoupled, even if the transformation into a decoupled system is attempted. To develop the point-kinetics equations with a driving function, first the variable ρ is expressed as a function of its steady-state value and its transient value:

$$\rho = \rho_0 + \delta \rho \tag{4-64}$$

Restating Equations (4-51) and (4-52) using transient variables,

$$\frac{d}{dt}(\delta C_{j}) = \frac{\beta_{j}\delta n}{\Lambda} - \lambda_{j}\delta C_{j} \qquad (4-65)$$

$$\frac{d}{dt}(\delta n) = \frac{1}{\Lambda}(\rho_{0}\delta n + \delta\rho n_{0} + \delta\rho\delta n - \beta\delta n) + \Sigma_{j}\lambda_{j}\delta C_{j} \qquad (4-66)$$

The following system of differential equations with a driving function is obtained:

$$\frac{\delta c_{1}}{\delta c_{2}} = \begin{bmatrix} -\lambda_{1} & 0 & 0 & 0 & 0 & 0 & \beta_{1}/\Lambda \\ 0 & -\lambda_{2} & 0 & 0 & 0 & \beta_{2}/\Lambda \\ 0 & 0 & -\lambda_{3} & 0 & 0 & 0 & \beta_{3}/\Lambda \\ 0 & 0 & 0 & -\lambda_{4} & 0 & 0 & \beta_{4}/\Lambda \\ 0 & 0 & 0 & 0 & -\lambda_{5} & 0 & \lambda_{5}/\Lambda \\ 0 & 0 & 0 & 0 & -\lambda_{6} & \beta_{6}/\Lambda \\ \lambda_{1} & \lambda_{2} & \lambda_{3} & \lambda_{4} & \lambda_{5} & \lambda_{6} & \frac{\rho_{0}-\beta}{\Lambda} \end{bmatrix} \begin{bmatrix} \delta c_{1} \\ \delta c_{2} \\ \delta c_{3} \\ \delta c_{4} \\ \delta c_{5} \\ \delta c_{6} \\ \delta n \end{bmatrix} = \begin{bmatrix} -\lambda_{1} & 0 & 0 & 0 & 0 & \beta_{1}/\Lambda \\ 0 & 0 & 0 & 0 & \beta_{2}/\Lambda \\ 0 & 0 & 0 & 0 & \beta_{3}/\Lambda \\ 0 & 0 & 0 & 0 & -\lambda_{5} & 0 & \lambda_{5}/\Lambda \\ 0 & 0 & 0 & 0 & -\lambda_{6} & \beta_{6}/\Lambda \\ \delta n \end{bmatrix} \begin{bmatrix} \delta c_{1} \\ \delta c_{2} \\ \delta c_{3} \\ \delta c_{4} \\ \delta c_{5} \\ \delta c_{6} \\ \delta n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ \frac{n_{0}+\delta n}{\Lambda} \\ (4-67) \end{bmatrix} .$$

Equating the δn term in the driving function to zero for reasons explained earlier, Equation (4-67) is expressed as

$$\frac{d}{dt} \begin{bmatrix} \delta C_{1} \\ \delta C_{2} \\ \delta C_{3} \\ \delta C_{4} \\ \delta C_{5} \\ \delta C_{6} \\ \delta n \end{bmatrix} = \begin{bmatrix} -\lambda_{1} & 0 & 0 & 0 & 0 & \beta_{1}/\Lambda \\ 0 & -\lambda_{2} & 0 & 0 & 0 & \beta_{2}/\Lambda \\ 0 & 0 & -\lambda_{3} & 0 & 0 & 0 & \beta_{3}/\Lambda \\ 0 & 0 & -\lambda_{4} & 0 & 0 & \beta_{4}/\Lambda \\ 0 & 0 & 0 & -\lambda_{5} & 0 & \beta_{5}/\Lambda \\ 0 & 0 & 0 & 0 & -\lambda_{5} & 0 & \beta_{5}/\Lambda \\ 0 & 0 & 0 & 0 & -\lambda_{6} & \beta_{6}/\Lambda \\ \lambda_{1} & \lambda_{2} & \lambda_{3} & \lambda_{4} & \lambda_{5} & \lambda_{6} & \frac{\rho_{0}-\beta}{\Lambda} \end{bmatrix} \begin{bmatrix} \delta C_{1} \\ \delta C_{2} \\ \delta C_{3} \\ \delta C_{4} \\ \delta C_{5} \\ \delta C_{6} \\ \delta n \end{bmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ n_{0}/\lambda \end{bmatrix}$$

$$(4-68)$$

As before, restate the precursor variables δC_j as the slow mode variable δX_1 and the power variable δn as the fast mode variable δX_2 . Then, Equation (4-68) can be restated as

$$\frac{d}{dt} \begin{bmatrix} \delta X_1 \\ \delta X_2 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} \delta X_1 \\ \delta X_2 \end{bmatrix} + \begin{bmatrix} 0 \\ n_0 / \Lambda \end{bmatrix} \delta \rho. \quad (4-69)$$
As before,
$$X = TY \qquad (4-3)$$

$$Y = T^{-1}X$$
 (4-6)

$$T = \begin{bmatrix} I_{n_{1}} & -K \\ -L & I_{n_{2}}^{+LK} \end{bmatrix}$$
(4-4)
$$T^{-1} = \begin{bmatrix} I_{n_{1}}^{+KL} & K \\ L & I_{n_{2}}^{-L} \end{bmatrix} .$$
(4-5)

To decouple the system of differential equations of Equation (4-69), apply the transformation matrix T and substitute Equation (4-3) as before. Equation (4-69) then becomes

$$\frac{\mathrm{d}}{\mathrm{dt}} \operatorname{T} \begin{bmatrix} \delta Y_{1} \\ \delta Y_{2} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \operatorname{T} \begin{bmatrix} \delta Y_{1} \\ \delta Y_{2} \end{bmatrix} + \begin{bmatrix} 0 \\ n_{0}/\Lambda \end{bmatrix} \delta \rho$$

$$\frac{\mathrm{d}}{\mathrm{dt}} \begin{bmatrix} \delta Y_{1} \\ \delta Y_{2} \end{bmatrix} = \operatorname{T}^{-1} \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \operatorname{T} \begin{bmatrix} \delta Y_{1} \\ \delta Y_{2} \end{bmatrix} + \operatorname{T}^{-1} \begin{bmatrix} 0 \\ n_{0}/\Lambda \end{bmatrix} \delta \rho. \quad (4-70)$$

Provided that suitable L and K matrices can be derived, this system can be transformed into

$$\frac{\mathrm{d}}{\mathrm{dt}} \begin{bmatrix} \delta \mathbf{Y}_{1} \\ \delta \mathbf{Y}_{2} \end{bmatrix} = \begin{bmatrix} \mathbf{B}_{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{B}_{2} \end{bmatrix} \begin{bmatrix} \delta \mathbf{Y}_{1} \\ \delta \mathbf{Y}_{2} \end{bmatrix} + \begin{bmatrix} \mathbf{I}_{n_{1}} + \mathbf{KL} & \mathbf{K} \\ \mathbf{L} & \mathbf{I}_{n_{2}} \end{bmatrix} \begin{bmatrix} \mathbf{0} \\ \mathbf{n}_{0} / \Lambda \end{bmatrix} \delta \rho$$

$$\frac{\mathrm{d}}{\mathrm{dt}} \begin{bmatrix} \delta \mathbf{Y}_{1} \\ \delta \mathbf{Y}_{2} \end{bmatrix} = \begin{bmatrix} \mathbf{B}_{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{B}_{2} \end{bmatrix} \begin{bmatrix} \delta \mathbf{Y}_{1} \\ \delta \mathbf{Y}_{2} \end{bmatrix} + \begin{bmatrix} \mathbf{K} \mathbf{n}_{0} / \Lambda \\ \mathbf{n}_{0} / \Lambda \end{bmatrix} \delta \rho. \qquad (4-71)$$

This is a decoupled system. It can be also be expressed as

$$\frac{d\delta Y_{1}}{dt} = B_{1}\delta Y_{1} + \frac{Kn_{0}\delta\rho}{\Lambda}$$
(4-72)

$$\frac{d\delta Y_2}{dt} = B_2 \delta Y_2 + \frac{n_0}{\Lambda} \delta \rho. \qquad (4-73)$$

Once these equations are solved, they are transformed back into the original variables using the transformation matrix T. Equation (4-60) is used as before, without changes.

For whatever size reactivity perturbation, the twotime-scale matrix decoupling algorithm is computed once. The L and K matrices are computed once. Power transients are then computed from an initial point via the driving function.

For further details the reader is referred to the comments section in the subroutine GALBA and to Section V.B.

V. MAIN DEVELOPMENT OF THE PROGRAMS

A. Main Program NERO

The program NERO is the program which controls all the others. It operates by prompting a user to select options or parameters. The user must select an option when prompted to do so, or the program stops. When all the choices have been made, NERO summarizes them on the computer screen, whence they may be transcribed via graphics or printed.

When prompting the user, NERO frequently will provide brief explanations of what is being requested. In general, NERO will present the user with the choice to be made, and then direct him (or her) to make a choice by typing in a number (usually 1 or 2).

Should a user select a number that cannot be used to specify an option, NERO will reject that choice and direct the user to select again. Similarly, if a user selects a parameter (for instance, power level) whose value lies outside permissible limits, NERO will reject that choice and direct the user to try again.

Except for conversions of output data into forms that can be used in graphics or tabular displays, NERO performs no calculations, but rather only receives input parameters as data and then controls subprograms.

Options that the user can select include:

- i) fuel isotope used
- ii) reactor kinetics with no feedback
- iii) reactor feedback with no control system
- iv) reactor control system with no natural feedback
- v) two-time-scale matrix decoupling algorithm
- vi) ramp-input model
- vii) prompt-jump approximation
- viii) steam valve perturbation instead of reactivity perturbation
- ix) output in graphics or a table
- x) lengthening of time of run
- xi) abbreviation of table output.

Parameters selected by the user include:

- i) reactivity and reactivity perturbation
- ii) coefficients of reactivity
- iii) control system parameters
- iv) initial power and power step (if the power step option is selected)
- wagnitude of ramp input and period over which it operates
- vii) extent to which table output is abbreviated

viii) length of run.

All dimensions used in NERO and its subroutines utilize the SI system of measurements. B. Reactor Kinetics Subroutine GALBA

The subroutine GALBA solves the reactor kinetics equations. It simulates the operation of a 3000 MWt pressurized water reactor (PWR) operating at a pressure of 2250 psia (or 15,513,875.1 pascals, or 15.514 MPa).

As input GALBA receives the following:

- i) step reactivity information
- ii) steady-state power information
- iii) control system and reactivity parameters
- iv) directions on whether the two-time-scale matrix decoupling algorithm, or the ramp input model, or the prompt jump approximation, or none of these will be used to solve for the reactor kinetics equations.

As output, GALBA computes reactor power changes.

GALBA performs power computations using, in most cases, time steps of 0.001 seconds. It performs power computations alternatively with OTHO until 0.2 seconds of reactor time has passed. At this point, NERO causes the program to temporarily terminate GALBA and OTHO computations and pass on to the steam generator subroutine DMTN.

1. Point-kinetics equations

Which ever algorithm or model is chosen, GALBA computes reactivity power via the point-kinetics-equation (4-5) and (4-52). Accordingly, from Section IV:

$$\frac{dC_{j}}{dt} = \frac{\beta_{j}}{\Lambda}n - \lambda_{j}C_{j} \qquad (4-51)$$

$$\frac{dn}{dt} = \frac{\rho - \beta}{\Lambda}n + \Sigma_{j}\lambda_{j}C_{j}, \qquad (4-52)$$

where

- ${\rm C}_{j}$ is the delayed-neutron precursor number for the jth group of precursors
- n is reactor power
- $\boldsymbol{\lambda}_j$ is the delayed-neutron decay constant for the jth group
- β_{i} is the delayed-neutron fraction for the jth group
- B is the total delayed-neutron fraction for all groups
- ∧ is neutron generation time
- ρ is reactivity.

The numerical method used to solve these equations is the method of finite differences. As developed in this program, Equations (4-51) and (4-52) will be solved only for transient quantities. Steady-state quantities will be computed once, and added to transient quantities when total output is desired.

The development of the numerical form of the pointkinetics equations from Equations (4-51) and (4-52) was presented in Section IV and will not be repeated here. Neither will the development of the two-time scale matrix decoupling algorithm, which was outlined in Section IV. However, the numerical form of the point-kinetics equations will be repeated here. They are:

$$\delta C_{j(i+1)} = h\left(\frac{\beta_{i}\delta n_{i}}{\Lambda}\lambda_{i}C_{ij}\right) + C_{ij} \qquad (4-55)$$

and

$$\delta n_{i+1} = h \left(\frac{1}{\rho_0} \delta n_i + \delta \rho n_0 + \delta \rho \delta n_i - \beta \delta n_i + \Sigma_j \lambda_j C_{ij} \right) + \delta n_i,$$
(4-56)

where

 $\rho_{\rm O}$ is the steady-state reactivity (usually zero)

- δρ is the transient reactivity
- h is the time step
- j is a subscript referring to the delayed-neutron groups
- i is a subscript referring to the current time step.

When solving the point-kinetics equations without matrix decoupling,

h = 0.001 sec

The basis for this and all other selections for h is developed in Section IV.B.4.

With decoupling,

 $h_{s} = 0.2 \, sec,$

 $h_{f} = 0.001 \, \text{sec},$

where h_s is the time step for the slow mode, and h_f is the time step for the fast mode.

One other observation is in order. The power response to

a step change in reactivity is characterized by a very rapid transient on the order of the prompt-neutron lifetime, followed by a much more slowly varying response governed by the delayed neutron behavior. If the prompt-neutron lifetime is taken to be essentially zero, then the power level jumps immediately to its slowly varying behavior level. This is the so-called prompt-jump approximation.

According to Hetrick [7], the prompt-jump approximation and the numerical methods of solving the point-kinetics equation are valid when

 $\frac{dn}{dt}$ and $\frac{dC_j}{dt}$

do not vary greatly over a time step. However, during the prompt jump, $\frac{dn}{dt}$ and $\frac{dC_j}{dt}$ do vary greatly. Therefore, all of the subroutines used in this program utilize arbitrarily small time steps during the period of the prompt jump (on the order of 0.001 sec, although for some Λ , the prompt-jump will be even shorter than this).

In the case of the matrix decoupling algorithm, h_s is defined as being 200 times the current value of h_f , where h_f is initially equal to 1.0×10^{-6} sec, but quickly increases to 0.001 sec. Where matrix decoupling is not used, h equals 1.0×10^{-6} sec initially, and likewise quickly increases to 0.001 seconds. Note that when h_f equals 0.001 sec, h_s equals 0.2 sec.

2. Ramp-input model

The usual method of inducing a reactivity perturbation is by introducing a step input of reactivity. That is, a reactivity perturbation is introduced instantaneously.

However, in the "real world", reactivity changes are not instantaneous (although they are sometimes so fast as to be considered nearly so). Usually they are deliberately slow and last several minutes.

To reflect this reality, a ramp-input model can be employed. In it, reactivity is introduced at a certain rate per second (selected by the user), and at the end of a time period (also selected by the user), the ramp input ceases to contribute any more reactivity. The subroutine NERO has safeguards within it that prevent any combination of rampinput rate multiplied by ramp-input time period to exceed 90% of prompt critical.

The ramp-input model uses the same point-kinetics Equations (4-55) and (4-56), that are used in solving reactor kinetics problems with step reactivity insertion. The only difference is that $\delta\rho$ in those equations varies as a function of time as well as is a function of feedback and the reactor control system. The ramp-input model is also compatible with the two-time-scale matrix decoupling algorithm.

The equations for the ramp-input model are

$$\rho_{t} = \gamma t \tag{5-1}$$

(5-2)

and

 $\gamma = \rho/sec$,

where

 ρ_+ is total reactivity

γ is ramp-insertion rate

t is time

p is reactivity.

3. Prompt-jump approximation

The prompt-jump that occurs after a step insertion of reactivity was mentioned earlier, in Section V.B.l. It lasts typically less than 0.001 seconds, and then the temporary absence of delayed-neutron precursors corresponding to the prompt-jump in power acts to inhibit further rapid power changes. Further power changes proceed relatively slowly.

Since the prompt-jump occurs very rapidly, it is possible to approximate it by assuming it takes place instantaneously.

Restating Equations (4-51) and (4-52),

$$\frac{dC_{j}}{dt} = \frac{\beta_{j}}{\Lambda} n - \lambda_{j}C_{j}$$
(4-51)

$$\frac{\mathrm{dn}}{\mathrm{dt}} = \frac{\rho - \beta}{\Lambda} n + \Sigma_{j} \lambda_{j} C_{j} . \qquad (4-52)$$

When Λ is small and $\rho\!<\!\beta$ (always the case in this program),

the right-hand side of Equation (4-52) contains a large negative number $((\rho-\beta)/\Lambda)$ and a large positive number $(\Sigma_j \lambda_j C_j)$. Under these circumstances, $\frac{dn}{dt}$ can be set equal to zero, and Equation (4-52) can be restated as

$$\frac{\mathrm{d}\mathbf{n}}{\mathrm{d}\mathbf{t}} = \mathbf{0} - \frac{\rho - \beta}{\Lambda} \mathbf{n} + \Sigma_{j} \lambda_{j} C_{j}.$$
(5-3)

Therefore,

 $-\frac{(\rho-\beta)}{\Lambda}n = \Sigma_{j}\lambda_{j}C_{j}$ $\frac{\beta-\rho}{\Lambda}n = \Sigma_{j}\lambda_{j}C_{j},$ and $n = \frac{\Lambda(\Sigma_{j}\lambda_{j}C_{j})}{\beta-\rho}.$ (5-4)

Feedback or a reactor control system is difficult to use with the prompt-jump approximation in this program. The reason is that in the prompt-jump approximation, the promptjump takes place instantaneously. Because it is instantaneous, feedback has no effect until it is over. Then, there have been so many environmental changes caused by the prompt-jump that the resulting feedback overcompensates for the perturbation caused in the prompt-jump, causing divergent power oscillations. This was observed in several trial runs.

One remedy is to estimate a feedback effect before

the prompt-jump takes place, and use this effect to modify the prompt-jump itself. With a modified prompt-jump, the resulting feedback may not be as large as it would have been without feedback, and the divergent oscillations may thereby be avoided.

Note that Equation (5-4) contains variables that include both transient and steady-state quantities. Accordingly, Equation (5-4) can be rested as

$$(n_{o}+\delta n) = \frac{\Lambda(\Sigma_{j}\lambda_{j}(C_{j}+\delta C_{j}))}{\beta - (\rho_{o}+\delta \rho)}.$$
(5-5)

Equation (5-5) is the equation used in GALBA to solve the point-kinetics equations using the prompt-jump approximation.

4. Choice of time steps

The size of the time step used in numerical solutions of differential equations is crucial. If a time step is too large, then transient phenomena occurring in the system between iterations will lead to divergence away from correct solutions. Time steps that are too small can lead to error through progressive arithmetic error. Also, they can waste CPU time.

Analytical techniques exist whereby the time step that is optimal for a given system can be determined. One of them is given by Hetrick [7]. Consider the differential equations system

$$\frac{d}{dt} \begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix}.$$
(5-6)

Using finite-difference methods, the solutions are

$$X_{i+1} = (1 + Ah)X_i + BhY_i$$
 (5-7)

and

$$Y_{i+1} = ChX_i + (1+Dh)Y_i.$$
 (5-8)

On the other hand, system (5-4) may be integrated in the form

$$X(t) = X(t_{o})e^{A(t-t_{o})} + B\int_{t_{o}}^{t} Y(t')e^{A(t-t')}dt'$$

$$Y(t) = Y(t_{o})e^{D(t-t_{o})} + C\int_{t_{o}}^{t} X(t')e^{D(t-t')}dt'.$$

During a time interval in which X and Y do not greatly change,

$$X(t') \stackrel{\sim}{=} X(t_{o})$$

and

 $Y(t') \stackrel{\sim}{=} Y(t_0)$

The integrals may then be evaluated:

$$X(t) \stackrel{\sim}{=} X(t_{o}) e^{A(t-t_{o})} + \frac{BY(t_{o})}{A} [e^{A(t-t_{o})} -1]$$

and

$$Y(t) \stackrel{\sim}{=} Y(t_{o}) e^{D(t-t_{o})} + \frac{CX(t_{o})}{D} [e^{D(t-t_{o})} -1].$$

Letting

 $h = t - t_{o}$ $X(t) = X_{i+1}$ $X(t_{o}) = X_{i}$ $Y(t) = Y_{i+1}$ $Y(t_{o}) = Y_{i},$

where h is the time step,

$$X_{i+1} \stackrel{\sim}{=} e^{Ah}X_i + \frac{B}{A}(e^{Ah}-1)Y_i$$
$$Y_{i+1} \stackrel{\sim}{=} \frac{C}{D}(e^{Dh}-1)X_i + e^{Dh}Y_i$$

Rearranging terms, Equations (5-7) and (5-8) yields

$$\begin{bmatrix} X \\ Y \end{bmatrix}_{i+1} = \begin{bmatrix} 1+Ah & Bh \\ & \\ Ch & 1+Dh \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix}_{i} = \begin{bmatrix} e^{Ah} & \frac{B}{A}(e^{Ah}-1) \\ & \\ \frac{C}{D}(e^{Dh}-1) & e^{Dh} \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix}_{i}.$$

(5 - 9)

By inspection, it can easily be seen that Equation (5-9) holds only if |Ah| and |Dh| are both small compared to unity. Thus, the larger of A or D will determine the size of the time step.

In order for Equation (5-9) to hold, it will be decided in advance that both ratios $\frac{1+Ah}{e^{Ah}}$ and $\frac{1+Dh}{e^{Dh}}$ will have to be

greater than or equal to 0.99.

By trial and error, the criterion that

|Ah| < 0.1

|Dh| < 0.1

seems to work well. For if

Ah = 0.1, then 1 + Ah = 1.1, $e^{Ah} = e^{0.1} = 1.105,$

and

 $\frac{1+Ah}{e^{Ah}} = \frac{1.1}{1.105} = 0.995.$ For |Ah| < 0.2, $\frac{1+Ah}{e^{Ah}} = 0.982,$

which may still be large enough. However, for

$$|Ah| < 0.5,$$

 $\frac{1+Ah}{Ah} = 0.910,$

which is definitely too small.

Here, the criterion that

Ah < 0.1 will be used.

Repeating the point-kinetics equations,

	$\frac{\mathrm{d}n}{\mathrm{d}t} = \frac{\rho - \beta}{\Lambda} n + \Sigma_j \lambda_j C_j$	(4-51b)			
	$\frac{dC_{j}}{dt} = \frac{\beta_{j}}{\Lambda}n - \lambda_{j}C_{j}.$	(4-5la)			
Here,					
	$A = \frac{\rho - \beta}{\Lambda}$				
	$D = \lambda_{i}$.				
	For U-235,				
×	$\beta = 6.5 \times 10^{-3}$.				

For all cases,

 $\Lambda = 0.0001$ seconds was used.

For all the delayed groups, λ_j ranges from about 0.01 to 3.0 sec⁻¹. Its weighted average is about 0.0767 sec⁻¹ for U-235, somewhat less for the other isotopes used.

 ρ , of course, is variable. However, its absolute value will never exceed $|\beta|$.

For any isotope, then,

$$A = \frac{\beta}{\Lambda}$$

$$D = \lambda_{max}.$$
For U-235,
$$A = \frac{6.5 \times 10^{-3}}{1.0 \times 10^{-4}} = 65.0.$$
For other isotopes, A equals about 20.0.

In all cases,

A>D, and therefore, A dominates.

Set

|Ah| < 0.1.

Then

 $h < \frac{0.1}{65.0}$

 $h < 1.53 \times 10^{-3}$.

Since 1.53×10^{-3} is not a round number, use h = 1.0 x 10⁻³ seconds.

5. Reactivity, feedback, and the reactor control system

Modern reactors are designed such that reactivity changes are to be controlled, either to maintain a given power level, or to dampen any unwanted reactivity excursions.

Reactivity can be dampened by feedback. That is, a given reactivity insertion will cause a power change, which will in turn, cause fuel temperature changes, and moderator pressure and temperature changes. These in turn affect the environment in which neutrons are produced. A change in any or all of these environmental conditions can increase or decrease neutron production rates, thus affecting power levels.

To define reactivity, a few concepts are needed first.

The neutron multiplication factor k is defined as the ratio of the number of fissions in any one generation to the number of fissions in the immediately preceding generation. When k = 1, the number of fissions in each generation is constant, and a nuclear chain reaction will proceed at a constant rate. Such a system is said to be critical. Since each fission is caused by a neutron splitting a uranium or plutonium atom, this is equivalent to saying that neutron production equals neutron losses.

Reactivity is defined as

$$\rho = \frac{k-1}{k} .$$

Note that when K > 1.0, ρ is positive. This means that the reactor is beyond critical (is "supercritical"), and reactor power is increasing. Conversely, if k < 1.0, power will decrease.

The term β is the delayed-neutron fraction. Since it takes on the order of several minutes for delayed-neutron precursors to start producing their share of the neutrons needed to sustain a chain reaction, the presence of delayedneutron precursors tends to inhibit power changes.

However, when $\rho > \beta$, the prompt neutrons contribute enough neutrons to sustain the chain reaction by themselves, and the delayed neutrons are no longer needed to keep the

reactor supercritical. This condition is called "prompt critical", and is a condition that the program will not allow to occur. The point-kinetics equations would still be valid, but power would be changing so quickly that very small time steps would be needed to follow the transient.

Feedback is a phenomenon that refers to the stability of dynamic systems. In general, a perturbation in a system causes environmental changes that in turn affect the conditions under which the system is operating. These altered conditions can change the levels at the system is operating. In reactor kinetics, the two most common feedback mechanisms come from Doppler broadening and moderator temperature changes.

Doppler broadening is a phenomenon that affects neutron absorption, and hence reactor power. At higher energies than thermal, there is a "peak" where the microscopic absorption nuclear cross section is considerably greater than at other energies. As temperature increases, the greater thermal motion causes the energy band of the resonance to widen and the peak to decrease. The total cross section integrated over all energies remain the same. However, at low temperatures, most of the neutron absorption occurs in a small band of resonance energies. This causes neutron absorption to occur mostly in the surface of the fuel and not the interior, through a phenomenon known as "self-shielding". At higher temperatures, the existence of broader resonances mean that

. 69

there is less self-shielding and greater neutron absorption in the interior. In other words, greater temperatures mean greater neutron absorption, causing reactivity decreases.

Most reactors are designed to operate with thermal neutrons. That is, a moderator (in the United States, usually light water) is placed between fuel assemblies and this moderator slows down neutrons to thermal energies by means of elastic collisions between neutrons and moderator molecules. Since neutrons on the average interact with fuel atoms at optimum energies, the temperature of the moderator can very much affect the energy of a neutron, since temperature is really a measure of moderator energy or how quickly moderator molecules are moving.

If the feedback is such that a perturbation on a dynamic system causes a change that tends to restore the system to a prior equilibrium level, the feedback is considered negative. Otherwise, it is positive; i.e., a negative coefficient of reactivity will cause negative feedback, while a positive coefficient of reactivity will cause positive feedback.

In terms of reactor kinetics,

 $\delta \rho_{f} = \alpha_{f} \delta^{T} f + \alpha_{m} \delta^{T} m' \qquad (5-10)$ where

 $\delta \rho_{\rm f}$ is change in reactivity due to feedback $\alpha_{\rm f}$ is Doppler coefficient of reactivity $\delta T_{\rm f}$ is change in fuel temperature

 α_m is moderator temperature coefficient of reactivity δT_m is change in moderator temperature.

Most reactor designs endeavor to keep feedback negative whenever possible. However, as reference [4] indicates, reactivity coefficients can vary depending on whether the fuel cycle is its beginning, middle, or end. In some cases, reactivity coefficients can be positive.

The computer program simulating this system can handle a range of reactivity coefficient reflecting all of these conditions. By default, median values for both coefficients are selected in case the user makes no changes. Both of these median values result in negative feedback.

The moderator temperature coefficient of reactivity is actually a combination pressure and moderator temperature coefficient. The pressure component comes from a pressurizer, which acts as a kind of surge tank or pressure relief mechanism to counteract any pressure perturbation, such as might be caused by moderator temperature changes. Parameters for the pressure coefficient of reactivity were taken from reference [10]. Since pressure can be directly related to temperature, the pressure and moderator temperature coefficient of reactivity can be reduced to the same dimensions, and therefore, combined into one coefficient, which was done.

While internal feedback may be regarded as a selfadjustment made by a system in reaction to a perturbation, a control system is a means by which a forced adjustment is made on a system in response to a perturbation.

In this program, a control system of the form

$$\frac{\rho_{c}}{dt} + \frac{1}{\tau_{c}}\rho_{c} = A[\delta T_{av} + \frac{1}{\tau}\int_{0}^{t} \delta T_{av}dt], \qquad (5-11)$$

where

 ρ_{c} is reactivity due to the control system $\frac{1}{\tau}$ is the time constant of the differential equation τ_{c} that describes the working of the mechanical actuator. δT_{av} is change in moderator temperature $\frac{1}{\tau}$ is a constant used to adjust the effect of the integral portion of the controller

A is control system gain.

The right side of Equation (5-11) represents a proportional controller plus an integral controller, and the left side represents the mechanical actuator.

Like all other equations in this program, Equation (5-11) is solved by finite-difference techniques. First, it assumes the form

 $\frac{\rho_{c(i+1)}^{-\rho}ci}{h} + \frac{1}{\tau_{c}}\rho_{ci} = A[\delta T_{avi} + \frac{1}{\tau}[h\Sigma T_{av_{i}}]],$ which yields

$$\rho_{c(i+1)} = h[A[\delta T_{av_{i}} + \frac{1}{\tau}[h\delta T_{av_{i}}]] - \frac{1}{\tau_{c}}\rho_{c_{i}}] + \rho_{c_{i}}, \quad (5-12)$$

where

- i is a subscript referring to the current time step in use
- h is the time step. In this program, h = 0.2, in other words, the control system insert corrections every 0.2 seconds.

C. Thermal Hydraulics Equations OTHO

The subroutine OTHO solves the thermal-hydraulics equations. The thermal-hydraulics equations are a system of two coupled equations that solve for reactor moderator temperature and reactor fuel temperature. From these data, reactor output temperature is computed and used as input in the steam generator subroutine DMTN. The moderator and fuel temperature changes are used to calculate feedback in GALBA. As input, OTHO utilizes reactor power data from the reactor kinetics subroutine GALBA and steam generator output temperature data from DMTN.

OTHO commences operations every 0.2 seconds of reactor time. Since its own time steps are much smaller than 0.2 seconds, it undergoes several iterations until 0.2 seconds passes, at which time control of the program passes to the steam generator subroutine DMTN.

The thermal-hydraulics equations are

$$C_{p_{f}}M_{f} \frac{dT_{f}}{dt} = n - h_{p}A(T_{f} - T_{m})$$
 (5-13)

$$C_{p_{m}}M_{m} \frac{dT_{m}}{dt} = h_{p}A(T_{f}-T_{m}) - C_{p_{m}}W(T_{o}-T_{i}),$$
 (5-14)

where

$$C_{p_f}$$
 is reactor fuel heat capacity (J/kgC)
 M_f is mass of reactor fuel (kg)
 T_f is reactor fuel temperature (C)
n is reactor power (MW)
 h_p is heat transfer coefficient (W/m²C)
A is heat transfer area (m²)
 T_o is reactor coolant output temperature (C)
 T_i is reactor coolant input temperature (C)
 C_{p_m} is reactor coolant heat capacity (J/kgC)
 M_m is reactor coolant mass (kg)
 T_m is reactor coolant temperature (C)
W is reactor coolant mass flow rate (kg/s).

The finite differences method is used to solve these equations. As in GALBA, these equations will be solved for transient quantities only. Accordingly, Equations (5-13) and (5-14) are restated in transient quantity form:

$$C_{p_{f}}M_{f} \frac{d\delta T_{f}}{dt} = \delta n - h_{p}A(\delta T_{f} - \delta T_{m})$$
(5-15)

$$C_{p_m} M_m \frac{d\delta T_m}{dt} = h_p A (\delta T_f - \delta T_m) - C_{p_m} W (\delta T_o - \delta T_i), \qquad (5-16)$$

where

 δT_{f} is transient reactor fuel temperature δT_{m} is transient reactor coolant temperature δT_{o} is transient reactor coolant output temperature δT_{i} is transient reactor coolant input temperature.

In a method similar to that used in Section IV for the development of the point-kinetics Equations (4-51) and (4-52), Equations (5-15) and (5-16) are transformed into the finite difference form

$$\delta T_{f(j+1)} = \frac{h}{C_{p_f} M_f} \left(\delta n_j - h_p A(\delta T_{fj} - \delta T_{mj}) \right) + \delta T_{fj}$$
(5-17)

and

$$\delta T_{m(j+1)} = \frac{h}{C_{p_m} M_m} ((h_p A(\delta T_{fj} - \delta T_{mj})) - C_{p_m} W(\delta T_{oj} - \delta T_{ij})),$$
(5-18)

where

j is a subscript referring to the current time step h is the time step.

The reactor core modeled is based on Babcock and Wilcox designs (references [2] and [4]). In these designs, reactor coolant flow is held constant at all power levels. Instead, the coolant temperature at the outlet of the core is allowed to vary directly and linearly with reactor power. Also, reactor inlet coolant temperature varies oppositely but linearly with reactor power; however, since reactor inlet coolant temperature is actually the outlet temperature of the steam generator, there are delays built-in.

Although both reactor coolant inlet and outlet temperatures vary with reactor power, they vary in such a way that the average temperature of the coolant does not change at all. In other words, changes in outlet temperature are offset by temperature changes at the inlet. An increase in one is offset by a decrease in the other, and vice versa. Because of built-in delays, such offsets do not occur immediately; rather, a given change in one quantity will eventually be followed by a negative change in the other.

For this reason, average coolant temperature can change as a transient. Eventually, it converges back toward its steady-state value of 313.89 C. For this reason, the effect of moderator temperature on the reactor is not great.

In general, a linear average temperature was used.

$$T_{\rm m} = \frac{T_{\rm o}^{+}T_{\rm i}}{2.0}, \qquad (5-19)$$

where

 T_m is moderator temperature T_o is reactor outlet temperature T_i is reactor inlet temperature

Since transient quantities are used in this program, Equation (5-19) is restated as

$$\delta T_{\rm mi} = \frac{\delta T_{\rm oi} + \delta T_{\rm ii}}{2.0} , \qquad (5-20)$$

where

δT_{oi} is the transient reactor outlet temperature (that is, the difference between current temperature and initial temperature)

 $\delta T_{i,i}$ is the transient reactor inlet temperature

Equation (5-20) leads to the important result that

$$\delta T_{oi} = 2.0 \times \delta T_{mi} - \delta T_{ii}.$$
 (5-21)

Since heat capacity of reactor coolant at constant pressure is an exponential function of temperature, the average heat capacity varies slightly (less than 1%) as a function of power, even though the average temperature itself remains constant. This is because the inlet and outlet temperatures of the coolant vary as a function of power, and at these extremes, heat capacity does not vary linearly. A correlation for average heat capacity was derived as a function of temperature, also by a least-squares fitting using an exponential model.

Because average heat capacity is not exactly constant, neither is reactor coolant flow rate. Depending on initial power level, coolant flow rate is fixed by NERO at the beginning of the program run. It remains constant thereafter.

Since average heat capacity of the reactor coolant is slightly dependent upon reactor power, so is the initial reactor coolant temperature. Initial reactor coolant temperature is computed at the beginning of the program run, and changes in coolant temperature are computed for powers different from this initial point.

The values of the coefficients of the expressions in Equations (5-17) and (5-18) need to be developed.

To develop the time step h, recall Equation (5-6),

$$\frac{d}{dt} \begin{bmatrix} X \\ X \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix}.$$
(5-6)

where the larger term A or D will determine the size of the time step. In the thermal-hydraulics Equations (5-17) and (5-18), the A-term must be compared to the D-term, where

$$A = \frac{h_p A}{C_p M_f},$$
$$D = \frac{h_p A}{C_p M_m}.$$

Typical values for these terms are:

$$h_p = 34000 \text{ W/m}^2 \text{K}$$

A = 5945.0 m²

 $C_{p_f} = 160 \text{ J/kgC}$ $M_f = 95000 \text{ kg}$ $C_{p_m} = 6000 \text{ J/kgC}$ $M_m = 13300 \text{ kg}$. Thus, A = 13.3 D = 2.5, A > D.

and

A>D.

Setting

|Ah| < 0.1,

13.3 h < 0.1

 $h < 7.52 \cdot 10^{-3}$.

h will be taken to be 0.005 seconds, except for arbitrarily small time steps at the beginning of the program run to account for the prompt jump in power that has taken place in GALBA.

From reference [10] (commonly referred to as the "Steam Tables"), converted into SI dimensions, formulae for the physical quantities of heat capacity of water, thermal conductivity of water, density of water, and kinematic viscosity of water were derived. Where possible, leastsquares fittings using an exponential model were fitted to the data points from reference [9]. These correlations are functions of temperature, at constant pressure. Separate correlations were derived for reactor pressure (2250 psia) and steam generator secondary side pressure (900 psia).

From reference [2], a value of 191,000 kg for the mass of the fuel was obtained. Since differences in density between the three fuel isotopes that can be used are so slight, this value is fixed for all isotopes and reactor conditions.

A linear correlation for heat capacity of fuel was derived from data contained in reference [6].

A permanent value of 5945 m² for the heat transfer area of the fuel assemblies was obtained from reference [4]. A correlation was derived from the same reference relating average fuel temperature to reactor power. At the beginning of the program run, a starting fuel temperature is computed. Fuel temperature changes around this point are computed as the program progresses. These fuel temperature changes are the fuel temperature changes used in computing feedback caused by Doppler broadening.

Since heat transfer is actually dependent upon the surface temperature of the body from which heat is being transferred, the thermal-hydraulics equations are solved for changes in moderator temperature and fuel cladding temperature. After changes in cladding temperature are computed, changes in fuel temperature are computed as a linear function of changes in

cladding temperature.

The heat transfer coefficient is based upon a correlation originally from Rohsenow (reference [9]). It is based upon three dimensionless numbers: the Reynolds number, the Prandtl number, and the Nusselt number. The Reynolds number is a quantity that describes the type of flow that a fluid is undergoing in a specific geometry; laminar or turbulent. The Prandtl number is a measure of how rapidly momentum is dissipated compared to the rate of diffusion in a fluid. For water under the conditions encountered in this program, its value is always approximately equal to one. The Nusselt number is a measure of the ratio of the thermal resistance of the fuel assemblies to the thermal resistance of the coolant.

The Reynolds number is expressed as Re.

Re = UD/v;

where

- U is flow velocity of reactor coolant (m/sec)
- D is diameter of fuel assemblies (by reference [4], D = 0.12 m
- v is kinematic viscosity (m^2/s) .

 $v = \mu/\rho$

where

µ is dynamic viscosity (kg/m s)

 ρ is density of reactor coolant (Kg/m³)

Correlations for μ and ρ were derived from data points obtained in reference [10].

The Prandtl number is expressed as Pr.

$$Pr = C_{pm} v \rho / K,$$

where

Cpm is heat capacity of reactor coolant (J/kgC)
v is kinematic viscosity (m²/sec)
p is density of reactor coolant (kg/m³)
K is thermal conductivity of reactor coolant
(W/mC).

As with the other variables, a correlation for K was derived from data points obtained from reference [9].

The Nusselt number is expressed as Nu. By reference [8],

 $Nu = 0.025 \text{ Re}^{0.8} \text{Pr}^{0.6}$.

Finally, the heat transfer coefficient h_p is given as

 $h_{D} = Nu k/D.$

Table 2 lists the correlations for the physical quantities mentioned in this section, along with the type of fit and the correlation coefficient R^2 (which is a measure from 0 to 1 of how good the fit is), where available.

Variable	Correlation	Type of fit	Pressure	R ²
Kinematic viscosity v	6.1777117.10 ⁻¹² T ² - 3.20997.10 ⁻⁹ T + 5.5038552.10 ⁻⁷ m ² /s	Parabolic	15.514 MPa (2250 psia)	none (only 3 data points)
Thermal conductivity k	0.7207553673 4.5873157·10 ⁻³ ·ЕХР (0.012380238 т) W/m С	Exponential		0.9995
Heat capacity C p	4992.4097749 + 2.49340775·10 ⁻⁴ ·EXP (0.04825458 т) J/kg C	Exponential	15.514 MPa (2250 psia)	0.9999
Density ρ	881.6309649 - 2.86514041.EXP (0.0133034152 T) kg/m ³	Exponential	•	0.9999
Heat capacity at 15.514 MPa and 3.3189 C as function of power	5916.241929 + 16.32498553.EXP (6.4880554.10 ⁻¹⁰ . Power)	Exponential	n	0.9995

Table 2. Correlations for physical constants of ${\rm H_2O}$ as a function of temperature

D. Steam Generator Subroutine DMTN

The purpose of the steam generator is to convert the thermal energy contained in reactor coolant into steam which can be used by the turbo-generator. Although this program does not concern itself with electric energy, nevertheless, the reactor power must be eventually transferred to the steam generator, and then to the turbine generator. It is the transfer of thermal energy that this program concerns itself with.

The steam generator is made up of two sides - the primary side and the secondary side. The primary side is the side that contains reactor coolant water, which is to be cooled by transferring its energy to the secondary side. As part of the reactor coolant system, the primary side operates around an average temperature of 313.89 C, and a pressure of 2250 psia (15.51 MPa). The secondary side operates in a temperature range of from 235 (42.76 degrees C subcooled) to 311.1 C (33.3 degrees C of superheat) at a pressure of 900 psia (16.21 MPa). It operates at an average temperature of 277.76 C, which is boiling temperature at this pressure. More than 83% of all heat transfer to the secondary side takes place in transforming saturated liquid to saturated steam vapor, without altering the temperature.

Unlike the reactor, the secondary side of the steam

generator does not conduct power changes by allowing inlet and outlet temperatures to vary. Rather, the coolant at the inlet is assumed to be at a constant temperature of 235 C (reflecting the fact that it is rejected water from the steam turbine), and coolant flow rate is varied to maintain a constant outlet temperature of 311.1 C (which corresponds to 33.3 C of superheat). This means that coolant flow rate can vary anywhere from 0 kg/sec to 1577 kg/sec, depending on whether the reactor is operating at zero power, full power, or anything in between.

The steam generator is based on designs obtained from references [2] and [4]. As modeled in this program, it has an inside diameter of 3.5 m, and a height of 20.0 m. Primary side coolant flows through 15,500 tubes with a diameter of 0.016 m each. Cross sectional area for secondary flow is 6.5 m^2 . Heat transfer area is 22400 m². Mass, including water, outer walls and tubing, is 250,000 kg.

The steam generator is basically a gigantic one-pass counter-flow heat exchanger, labeled thus because the primary and secondary sides flow in opposite directions and pass by each other only once. As in any heat transfer system, power is exchanged between primary and secondary sides as a direct, linear function of the temperature difference between the two sides. Since this temperature difference is not the same for all areas of the steam generator, an average

temperature difference is computed, based upon the inlet and outlet temperatures of both the primary and secondary sides. This temperature difference is called the Logarithmic Mean Temperature Difference (LMTD) and is defined as

LMTD =
$$[(T_{poi} - T_{soi}) - (T_{pii} - T_{sii})] / [ln[(T_{poi} - T_{soi}) - (T_{pii} - T_{sii})]),$$
 (5-22)

where

- T_{poi} is the inlet temperature on the primary side (outlet temperature, from the reactor)
- T_{soi} is the outlet temperature on the secondary side (always equal to 311.1 C)
- T_{pii} is the outlet temperature on the primary side (inlet temperature, to the reactor)
- T_{sii} is the inlet temperature on the secondary side (always equal to 235.0 C).

In Section V.C, the heat transfer coefficient was found to be a function of the Reynolds number raised to the 0.8 power (reference [7]). Since the Reynolds number is a linear function of coolant velocity, which in turn is a linear function of mass flow rate, it follows that the heat transfer coefficient is a function of the mass flow rate raised to the 0.8 power.

Based upon the known quantities of heat transfer area, and mass flow rates and LMTDs at various steady-state power levels, heat transfer coefficients were computed for each of six different power levels from 0 MW to 3000 MW. Using these results as data points, a least-squares fitting was derived, assuming that h is a function of mass flow rate to about the 0.8 power. This least-squares fitting has an R^2 correlation coefficient of 0.98, with a much higher R^2 value for power levels above 1000 MW. Accordingly, the heat transfer coefficient h_c used in DMTN is given as

 $h_s = 9.726 W^{0.806}$, (5-23)

where

W is mass flow rate (kg/sec).

The quantity 9.726 is a constant of proportionality. The heat transfer coefficient h_c has dimensions of W/mK.

DMTN solves the steam generator equations to compute the thermal power output of the power plant. The steam generator equations are a system of two coupled differential equations that solve for the temperature of the primary side of the steam generator and the temperature of the secondary side of the steam generator.

The steam generator equations, given in transient quantities are

 $(M_{msg}Cpm)\frac{d}{dt}T_{sg} = C_{pm}W_p(T_{sgo}-T_{sgi}) - h_sA(T_{sg}-T_s) (5-24)$ and

$$C_{\text{ptm}} \frac{d}{dt} T_{s} = h_{s} A(T_{sg} - T_{s}) - W_{s} D_{hfg}' \qquad (5-25)$$

		- 20		
T. 7	n	0	r	e
w	11	-	1.	-

- ${\rm ^{M}_{msg}}$ is the mass of the coolant in the primary side of the steam generator
- C is the average heat capacity of the coolant in the primary side adjusted slightly for reactor power (J/kgC)
- ${\rm T}_{_{\rm SC}}$ is temperature of the coolant of the primary side
- W_p is mass flow rate of the primary side
- ${\rm T}_{_{\rm SGO}}$ is inlet temperature of the primary side
- ${\rm T}_{_{\rm SCI}}$ is outlet temperature of the primary side
- hs is the heat transfer coefficient between the primary side and the secondary side. It is a term that combines_forced convection and boiling heat transfer (W/m²C)

A is heat transfer area (always 22400.0 m²)

- T_s is temperature of the secondary side of the steam generator
- C is a composite term consisting of the sum of (heat capacity of iron times mass of steam generator) plus (average heat capacity of secondary side water times quantity of secondary side water). It represents the total specific heat of the secondary side. It equals 2.54 x 10⁸, and has the dimensions of (J/C)
- W is the mass flow rate of the fluid on the secondary side (kg/sec)
- Dhfg is quantity of energy required to raise one kg of water at 900 psia from 235.0 C to vapor at 311.1 C. It equals 1,901,744.17 J/kg.

It should be noted that the change of temperature variable on the secondary side reflects average conditions. More than 83% of all energy transfer takes place in the two-phase region, where there is no temperature change at all upon addition of energy. Any actual temperature changes take place in the subcooled and superheated regions.

Like all other systems of coupled equations in this program, Equations (5-24) and (5-25) are solved for transient quantities, using finite difference methods. Accordingly, they are restated in transient quantity form as

$$\delta T_{sg(i+1)} = \left(\frac{h}{M_{msg}C_{pm}}\right) \left[\left(\left(C_{pm}W_{p}\right)\left(\delta T_{o(i-24)} + TD\right) - \delta T_{ii}\right)\right] - \left(\left(h_{s}A\right)\left(\delta T_{sgi} + LMTD\right) - \delta T_{si}\right)\right] + \delta T_{sgi}$$
(5-26)

and

$$\delta T_{s(i+1)} = \left(\frac{h}{CPTM}\right) \left[\left(\left(h_{s}A\right)\left(\delta T_{sgi} + LMTD - \delta T_{si}\right)\right)\right]$$

$$(W_{s}D_{hfg})],$$
 (5-27)

where

TD is the initial temperature difference between inlet and outlet temperatures on the primary side.

A few remarks must be made concerning Equations (5-26)and (5-27). Although these equations are solved for transient quantities, transient temperature differences are not used in the right side. This is because the heat transfer coefficient h_s is based upon full power transfer, not transient power transfer, and the full temperature instead of transient differences must be used to produce accurate results. Since the derivative of the full variable equals the derivative of the transient quantity, no inaccuracy is introduced.

Also, Equation (5-27) is solved only for the change in secondary side temperature that has occurred during that time step. Cumulative, or total, transient temperature is not computed. This is reflected in the absence of an isolated δT_{si} term in the right side of Equation (5-27). The reason this is done is that it is considered that after each time step, secondary side flow rate is changed to the extent necessary to absorb any temperature change. This will ensure that for any power level, secondary side outlet temperature is always 311.1 C.

Analysis of the steam generator equations led to the result that the ratio of energy transferred to the change of temperature on the secondary side is 50,600.0. This leads to Equation (5-28).

 $E_{t} = 50,600.0 \frac{J}{C} \delta T_{si} C,$ (5-28) where

Et is energy transferred from the primary side to the secondary side per kilogram coolant (J/Kg)

δT is the change of temperature on the secondary side.

Over an extended period, steam generator power could be computed by adding E_t to D_{hfg} , and multiplying this quantity by W_s . This would represent the old power level plus any

power changes caused by transient temperature differences on the secondary side, which themselves are caused by changes in power transferrals from the primary side to the secondary side.

However, a modification to this procedure must be made. The reason is that without such a modification, calculations cannot be correctly performed.

Recall Equations (5-18) and (5-21).

$$\delta T_{oi} = 2.0 \times \delta T_{mi} - \delta T_{ii}, \qquad (5-21)$$

where

 $^{\delta T}\textsc{oi}$ is the change in reactor outlet temperature in a given time step $\delta \mathtt{T}_{m\,i}$ is change in reactor coolant temperature

 $\delta {\tt T}_{\rm i\,i}$ is the change in reactor inlet temperature,

and

$$\delta T_{m}(i+1) = \frac{h}{C_{pm}M_{m}} [(h_{p}A(\delta T_{ei} - \delta T_{mi})) - (C_{pm}W_{p}(\delta T_{oi} - \delta T_{ii}))]. \qquad (5-18)$$

Ideally, after a power step, reactor outlet and inlet temperatures should converge toward the values they would have had if the power step had been part of the original power. This would mean that δT_{oi} and δT_{ii} would change by the same amount, albeit with opposite signs. For this reason, $\delta T_{\mbox{oi}}$ and $\delta T_{\mbox{ii}}$ would cancel each other out and $\delta T_{\mbox{m}}$ would remain at zero.

During the discussion to follow, the concept of the temperature that would prevail under steady-state conditions at a new power level will be utilized. This refers to the equal and opposite changes in δT_{oi} and δT_{ii} that were discussed in the previous paragraph.

However, because this program has delays built it takes 11 seconds for reactor coolant to make a complete circulation. If, for instance, the reactor is operating at steady-state and then a reactivity step is inserted, reactor moderator and outlet temperatures will immediately change, because δT_{ii} still equals zero. Because δT_{ii} still equals zero, it does not now cancel δT_{oi} to produce an average moderator temperature change of zero (see Eq. 5-21). Because of this and the fact that δT_{ii} still equals zero, the δT_{oi} term in Equation (5-21) is twice as large as it would be if the δT_{ii} term had the value to which it ought to be converging at the new power level.

This causes no problems in OTHO. Application of the thermal-hydraulics equations (Equations (5-17) and (5-18)) will cause a certain amount of power to be transferred from fuel to coolant for a given sum of δT_{oi} plus the negative of δT_{ii} , keeping in mind that under steady-state conditions,

 δT_{oi} is equal and opposite in sign to δT_{ii} . If δT_{ii} equals zero, the same level of power will be transferred if δT_{oi} equals twice the value that it would have for steady-state conditions at the new power level. This in fact is what happens in OTHO.

However, if uncorrected, this wreaks havoc in DMTN. For there too, energy transfer from the primary side is dependent only on the temperature difference between the steam generator inlet and outlet, since primary side flow rate is constant. If the reactor outlet temperature change δT_{oi} coming into the steam generator is twice as large as its steady-state value for the new power level, then the new δT_{ii} that it computes will equal zero, in a mirror image of the process that takes place in OTHO. Total power transferred remains the same, except for a small distortion caused by that fact that the temperature difference between primary and secondary sides is different from what it would be under steady-state conditions.

Since δT_{ii} is calculated by DMTN to be equal to zero, δT_{ii} remains zero when the coolant returns to the reactor. Thus, there is no δT_{ii} to reduce δT_{oi} back toward the value it would have under steady-state conditions at the new power level. Furthermore, δT_{mi} does not converge back toward zero, as it would if δT_{ii} had the value that it would

have under steady-state conditions at the new power level, This distorts reactor performance, as there is feedback associated with any value for δT_{mi} other than zero.

The fact that δT_{oi} is twice as large as it "ought" to be, can be used by DMTN as a criterion for boosting W_s to compute a δT_{ii} that is equal to the value that it would have under steady-state conditions at the new power level. After the delay needed to transport the coolant back to the reactor, this value of δT_{ii} will cause the moderator temperature change to converge back toward zero and the magnitude of δT_{oi} to converge toward the value it would have under steadystate conditions at the new power level (see Equation 5-2).

This would mean that until δT_{oi} is reduced, the steam generator power change is 50% greater than the reactor power change. This may seem impossible, but it is important to remember that, over an extended period of time, not only must reactor power equal steam generator power, but total reactor energy output must equal total steam generator energy output. If, for instance, the reactor had boosted power by 100 MW, it would be producing this extra energy and increased δT_{oi} for five seconds until the hotter coolant arrived at the steam generator. Even if the steam generator then boosted its power immediately by 100 MW to match the reactor, the fact would remain that the reactor would have produced 500 MJ more energy than the steam generator over an extended period

of time. Since this is impossible, it follows that in order to make up the energy deficiency, the steam generator must temporarily produce more power than the reactor. Since inlet and outlet temperatures on the secondary side are to be constant, this must be done by varying the flow.

Introduce the variable TS. TS equals the difference between actual δT_{oi} and the value that it would have under steady-state conditions at the new power level. It is the negative of what δT_{ii} would be under steady-state conditions at the new power level.

Introduce the variable W_{sa} , where W_{sa} is the mass flow rate change (kg/s) on the secondary side needed to provide the power boost needed to make up the energy deficit.

$$W_{sa} = 49.9035 \text{ x TS.}$$
 (5-29)

Analysis of the steam generator equations led to the result that the mass flow rate on the secondary side (under steady-state conditions) equals 49.90 times the total difference between steam generator inlet and outlet temperatures. This is the origin of the constant of proportionality 49.90 in Equation (5-29).

TS represents half of the total temperature change between steam generator outlet and inlet on the primary side that would occur if a given reactor power change caused the outlet and inlet temperatures of the steam generator to con-

verge toward the values they would have under steady-state conditions at the new power level. In actuality, δT_{ii} at this point still equals zero. Since δT_{oi} , at this point, is twice as large as it would be if the steam generator were converging toward steady-state conditions at the new power level, the δT_{ii} level toward which the steam generator would ideally be converging under steady-state conditions at the new power level is equal to half of the negative of δT_{oi} , or exactly equal to half of the negative of TS. By changing the mass flow rate on the secondary side by an amount equal to 49.90 times TS, the steam generator heat transfer coefficient and steam generator power will change, causing δT_{ii} to converge toward the value it would have under steadystate conditions at the new power level.

The change in energy transfer from primary to secondary side in any given time step caused by the flow of W_{sa} is given by

DENTC_i = 50,600.0 x h x ($W_{sai} - W_{sa(i-1)}$) x $D_{hfg} / CPTM$, (5-30)

where "i" and "i-l" subscripts on W sa refer to the current and to the most recent time step, respectively.

To compute the change in power transfer from the primary to the secondary side caused by the flow of W_{sa} , the total sum of DENTC over all time steps is computed:

$$TDENTC = \sum_{i=1}^{\Sigma} DENTC_{i}.$$
 (5-31)

The power change caused by the flow of W_{sa} is computed by Equation (5-32) as

$$PWRCH = W_{sa} (TDENTH + D_{hfg}).$$
(5-32)

Steam generator power is computed by Equation (5-33)PWR = W_s(DENTH+D_{hfg}) + PWR. (5-33)

After the new steam generator power is computed, a new W_c is computed by means of Equation (5-34).

$$W_{s} = (PWR - PWRCH) / D_{hfg}.$$
(5-34)

The variable W in Equation (5-23) stands for the sum of W_s and W_{sa} . Because of the effect of W_{sa} , the heat transfer coefficient h_s has a different value from what it would have if it were computed on the basis of W_s alone. This results in an improved value for δT_{sg} .

$$\delta T_{ii}$$
 is now computed by means of Equation 5-35.
 $\delta T_{ii} = 2.0 \times T_{sgi} - T_{oi}$. (5-35)

Because the secondary side flow rate has been adjusted by means of the W_{sa} term, the δT_{ii} term that is now computed is the value for δT_{ii} that would prevail under steady-state conditions at the new reactor power level. This δT_{ii} term then travels to the reactor, where, via Equations (5-17) and (5-18), δT_{mi} is brought back toward zero and δT_{oi} is brought back to the value it would have under steady-state conditions at the new power level. Coolant at the new temperature for δT_{oi} then travels back to the steam generator. There, W_{sa} and PWRCH are both caused to converge back to zero, ending the power boost needed to make up the previously mentioned energy deficit.

In actuality the process is not this simple, except for the special case of a step change in reactor power that does not change after insertion of the step. The reason the process is not this simple is that by the time the coolant at the temperature of δT_{ii} reaches the reactor, reactor power itself has changed, and the δT_{ii} signal is not powerful enough to quickly cause δT_{mi} to converge back to zero or δT_{oi} to converge toward its steady-state value at the new power level. Furthermore, any changes in δT_{mi} will cause additional power changes through feedback, masking the process further.

DMTN is also capable, within limits, of load following. Load following is the fixing of the steam generator at a given constant power level, different from current reactor power, and then allowing the reactor to converge toward the steam generator power through feedback.

Secondary side flow at full power (3000 MW) equals

1577.72 kg/sec. This can be throttled down through the use of a valve. Introduce the variable VO. VO is the fraction that represents the percentage (from 0% to 100%) of full power flow that the valve allows to pass.

If load following is desired by the user, it is selected in NERO. If it is selected, the user then decides how large the valve opening is to be. If the choice for VO results in a steam generator power level that is not within 10% of current reactor power, NERO will reject that choice and instruct the user to select again.

Once load following is selected, if the selected steam generator power is different from reactor power, steam generator outlet temperature will be immediately affected, but inlet temperature will not change at all. δT_{ii} will immediately assume some nonzero value, while δT_{oi} will still remain equal to zero. When the coolant at the new temperature of δT_{ii} arrives at the reactor inlet, it will immediately affect the value of the moderator temperature, which in turn, will affect reactor power through feedback. The new reactor power level will then determine what the reactor outlet temperature δT_{oi} will be. Eventually, reactor power and total energy output will equal that of the steam generator.

Except for arbitrarily small time steps during the first 0.1 seconds to take the prompt-jump into account, the time

step in DMTN always equals 0.2 seconds.

An unsuccessful attempt was made to devise a steam generator subroutine that divided the steam generator into five heat-transfer regions: one node for superheat flow, three for two-phase flow, and one for subcooled flow. Heat transfer coefficients appropriate to each region were devised. The system broke down because of a lack of good correlations for heat transfer in the two-phase region and because the system was extremely complicated, requiring many calculations to achieve results similar to those that can be achieved by using a simple model with few calculations.

E. Graphics Subroutine VESPASIAN

Should the user wish it, program output can be displayed graphically instead of in a table. The graphics output consists of 3 displays, successively drawn. After one display is drawn, the program does not draw a successive display until the user signals that this is desired. All three displays project power plant phenonema such as power and temperature as functions of time in all cases.

All graphics are displayed inside an artificial window drawn on the computer terminal screen. This screen has viewing conveniences such as tic marks and labels. Because some phenomena such as reactor and steam generator power are

so close to each other, at the user's option the graphics display can be expanded in order to show contrasts better. Also, when two or more phenomena are simultaneously drawn in the same display, different patterns of dashed lines for each phenomenon are used. If the user has previously chosen to allow the program to run longer than its default time period, the labeling in each display will accurately depict this. Depending on the type of computer terminal the user is using, hard copies of graphics output can be obtained.

The first graphics display shows reactor power and steam generator power. The second display shows average reactor fuel temperature. The third shows total changes in reactor outlet temperature, reactor inlet temperature, and average moderator temperature.

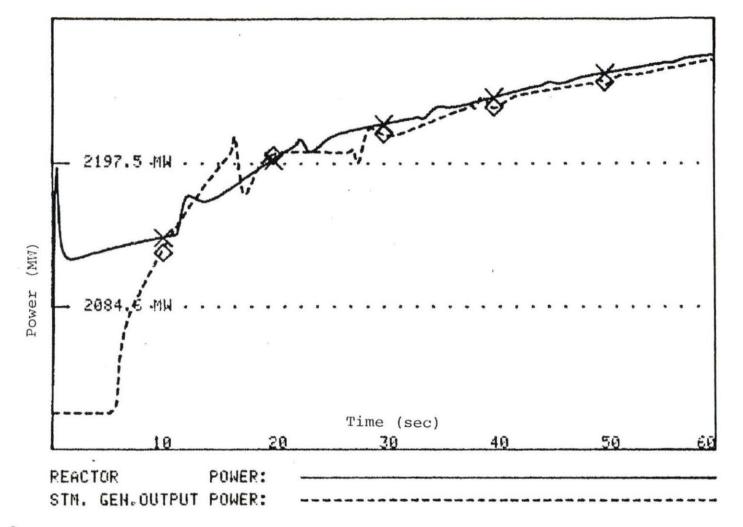
For further information, the reader is directed to the comments statements of the subroutine VESPASIAN.

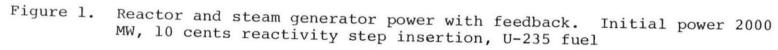
VI. TESTS AND RESULTS

Many test runs were made to illustrate the effects of different options chosen. In order to more clearly depict the effects of a given option, the reactor had an initial power level of 2000 MW in all cases. Except where otherwise noted, pre-perturbation reactivity was always zero, any reactivity insertion was always 10 cents, U-235 was the fuel, and default values were used for system parameters.

All output to be discussed here is graphics output. Graphics output in any run consists of three displays, drawn successively. Display 1 plots both reactor power and steam generator power. A user can study the effects that a perturbation in one system has on the other. Display 2 plots fuel temperature only. Display 3 plots changes in reactor inlet temperature, reactor outlet temperature, and average moderator temperature.

All displays have the same general format. They consist of a window (referred to in graphics as a "viewport") enclosing the plots. As all plots are a function of time, numbers denoting point-in-time (in seconds) are written where appropriate in the viewport. Tic marks corresponding to these points in time are superimposed on all plots, as an aid in interpreting them. Tic marks on the vertical axis aid in interpreting response as a function of time. In cases


where more than one plot appears in the same display, different dash patterns are used for the lines of each plot. A legend describing the type of dash pattern associated with each plot appears under the viewpoint.


The reactor coolant operates on an ll-second cycle. That is, a given perturbation in the reactor will require 5 seconds before its effects arrive at the steam generator. Steam generator changes then take 3 seconds to be completed, while these changes then take another 3 seconds to arrive back at the reactor, completing the loop.

Thus, a given reactor perturbation will take 5 seconds before it affects steam generator performance, and another 6 seconds before those effects cause further reactor perturbations through feedback. These new reactor perturbations will cause a third generation perturbation at time equals 22 seconds, and a fourth generation perturbation at 33 seconds. As can be seen in Figure 1, these perturbations dampen out rapidly. The sixth generation perturbation at 56 seconds is barely perceptible.

Figure 1 depicts the performance of the point-kinetics equations with no modifications. Initial power is 2000 MW. The perturbation in the reactor consists of a step insertion of 10 cents of reactivity.

There are many points of interest in Figure 1. First is

the existence of the prompt jump, at time of less than a second. Note that in less than half a second, reactor power jumps from 2000 MW to almost 2200 MW, then drops almost as rapidly to about 2110 MW.

The reason for this is feedback. While a given reactor power step can occur very rapidly, because they have heat capacities, fuel and moderator temperatures do not rise as quickly. Since feedback reactivity is directly dependent upon fuel and moderator temperatures, it is possible for reactor power to rise to a given level before the feedback that would normally be associated with that level can actually be generated. Because of this, reactor power can rise higher than it otherwise would.

However, while fuel and moderator temperatures do lag behind the prompt jump, they can reach their proper levels in less than a second. While this is much longer than the prompt jump, which takes place in less than a millisecond, it is still quite rapid. Since the prompt jump is finite, it ceases its rapid climb in a very short period, giving fuel and moderator temperatures the chance to reach their proper levels. Figures 11 and 12 show that this is mostly accomplished by one second after the reactivity insertion.

After fuel and moderator temperatures approach their proper levels, there is insufficient reactivity to support

the high power levels. Thus, a rapid power decrease, or falloff, takes place as Figure 1 indicates. Actually, even though a power decrease takes place, reactivity is still positive, as is shown by the fact that the power change always remain positive. The reason reactor power decreases anyway is that the delayed-neutron precursor density is still not great enough to support the new power level. This is a dramatic illustration of the importance of delayed-neutron precursors in reactor control Hetrick [7] states that this is a common phenomenon in thermal reactors with large negative coefficients of reactivity.

In the absence of any further feedback, the slope of the power plot between 1 second and 11 seconds in Figure 1 indicates that reactor power would reach the level of the peak of the prompt jump again at about one minute. This agrees nicely with the fact that the delayed-neutron precursors have a half-life on the order of one minute, and takes about that long to build up.

During the first ll seconds, the steam generator is increasing its power output in response to increased reactor power. This results in a decrease of steam generator outlet temperature. This is the same thing as a decrease in reactor inlet temperature, since coolant flows from steam generator to reactor.

When this coolant with lowered temperatures arrives at the reactor at 11 seconds, it immediately lowers the average moderator temperature, as is shown in Figure 16. This in turn quickly lowers fuel temperature, as is seen in Figure 15. The rapid lowering of fuel and moderator temperatures adds a large reactivity step because of feedback, resulting in another rapid power rise at 11 seconds. This shows a power falloff similar to the one that took place after the prompt jump. Note that the prompt jump and the power falloff that take place at 11 seconds are not nearly so large as those that take place in the first second, even though they are caused by the same phenomena. Note too that the pattern of successive generations of rapid power rises followed by rapid power falloffs every eleven seconds shows a tendency to dampen out. As mentioned previously, the sixth generation, at 56 seconds, is barely perceptible.

The steam generator responds to reactor perturbations five seconds after the reactor perturbation takes place. As shown in Figure 16, reactor outlet temperature shows a drop at 11 seconds followed by 11 more seconds of more or less constant temperatures. This results in a steam generator power drop 5 seconds later at 16 seconds, followed by a recovery and essentially constant power output until 28 seconds. This pattern of power falloff and recovery repeats

itself every 11 seconds until it too is dampened out at about 60 seconds. Overall, the steam generator is capable of matching any reactor power change with only minor lagging.

Figures 2 and 3 also depict the performance of the unmodified point-kinetics equations with a reactivity step increase of 10 cents from an initial power level of 2000 MW. The difference is that in Figure 2, U-233 is used as fuel, and in Figure 3, Pu-239 is used. The main difference between Figures 2 and 3 on the one hand, and Figure 1 on the other, is that the power falloff after the prompt jump in Figures 2 and 3 is not as rapid as in Figure 1. This is because the Doppler coefficients of reactivity used for U-233 and Pu-239 in Figures 2 and 3 are smaller than the coefficient used for U-235 in Figure 1.

Figure 4 illustrates the workings of the prompt-jump approximation. Hetrick [7] shows the prompt-jump approximation will yield solutions of the point-kinetics equations that are slightly higher than those yielded by the unmodified point-kinetics equations. In this run, that was not the case. The reason is that the prompt jump generated by the prompt-jump approximation did indeed show a higher peak than that generated by the unmodified pointkinetics equations. Because of this, feedback caused a

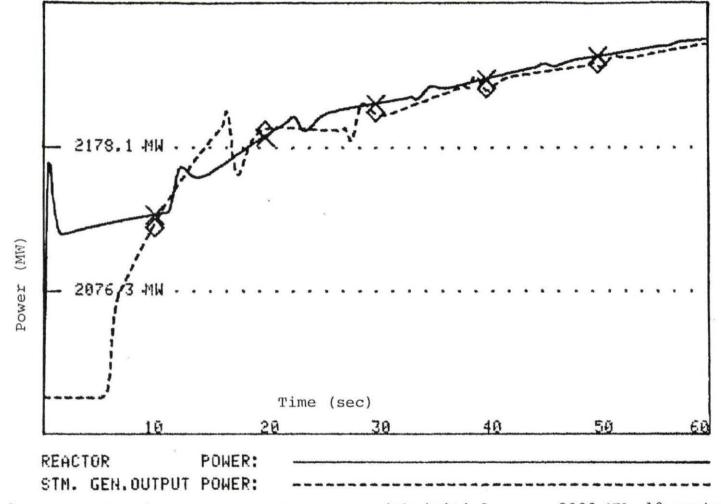


Figure 2. Reactor and steam generator power with initial power 2000 MW, 10 cents reactivity step insertion, U-233 fuel

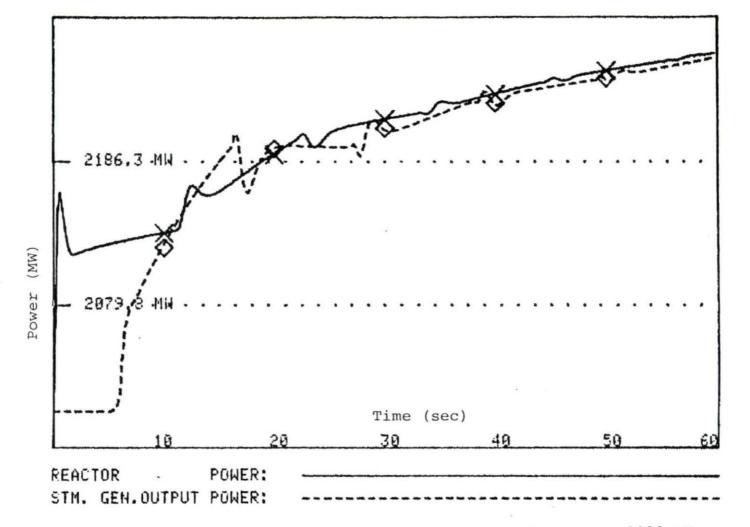


Figure 3. Reactor and steam generator power with initial power 2000 MW, 10 cents reactivity step insertion, Pu-239 fuel

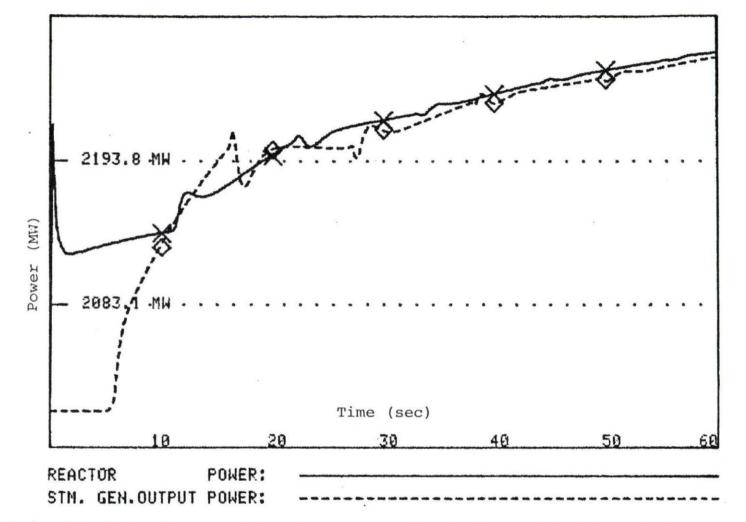
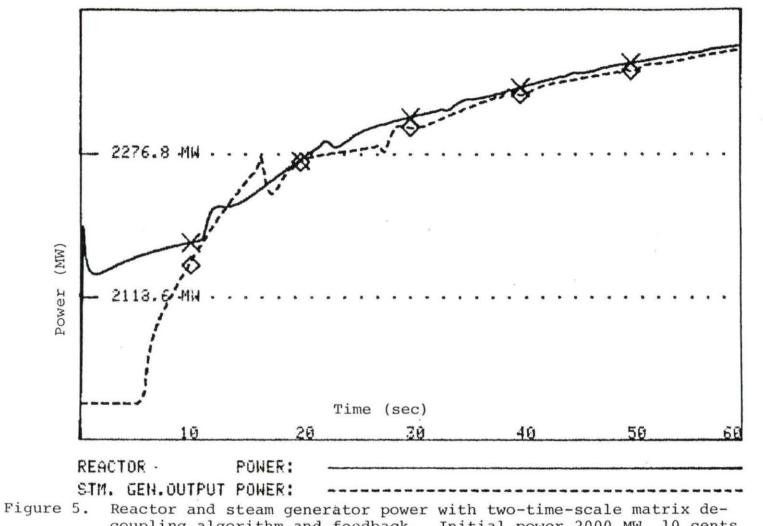
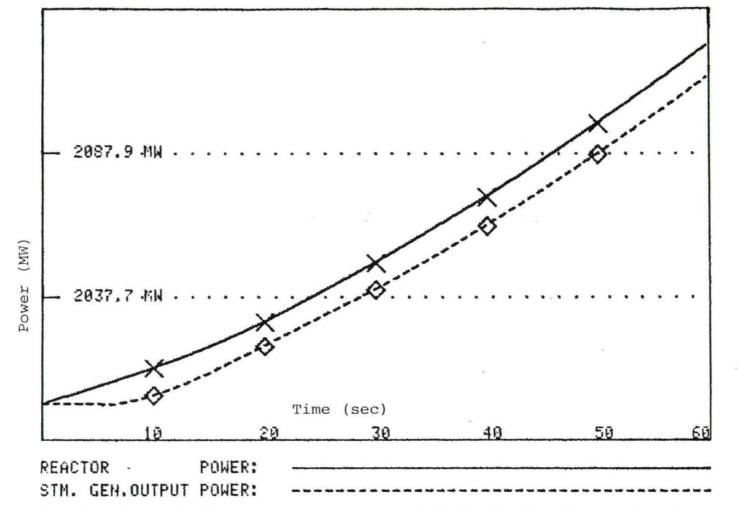



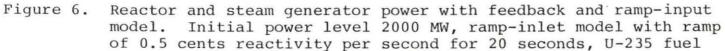
Figure 4. Reactor and steam generator power with feedback and prompt-jump approximation. Initial power 2000 MW, 10 cents reactivity step insertion, U-235 fuel

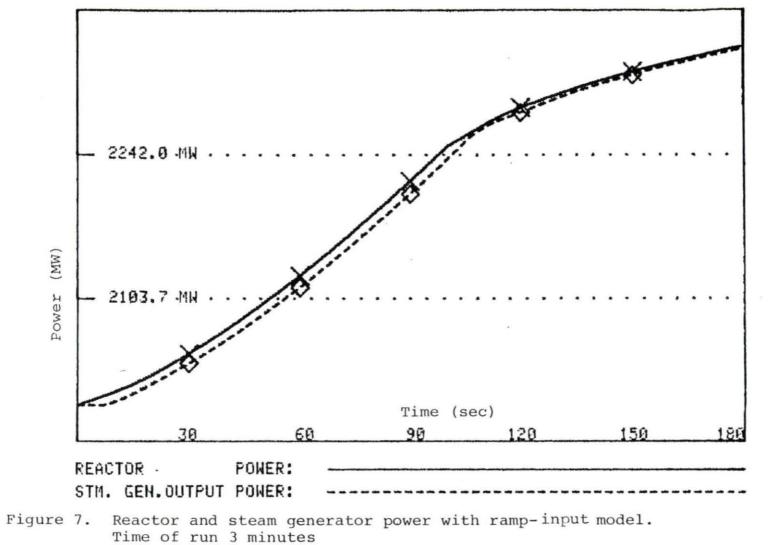
larger power falloff for the prompt-jump approximation than for the unmodified point-kinetics equations. This resulted in the power level in the prompt-jump approximation leveling off at a slightly lower level than in the unmodified pointkinetics equations, and remaining lower.

Figure 5 shows results of the two-time-scale matrix decoupling algorithm. The perturbation consisted of a step reactivity insertion from an initial power level of 2000 MW. Comparison with Figure 1 shows similarity in all respects except one - the decoupling algorithm shows power level changes 50% greater than those shown by the unmodified pointkinetics equations. Similar results are obtained for much smaller perturbations as well. It should also be noted that the reactor power falloff from the prompt jump peak level is not nearly so great with matrix decoupling as it is with unmodified reactor kinetics.

Although computer costs are reduced using matrix decoupling, this discrepancy is too great to recommend the use of the two-time-scale matrix decoupling algorithm as a general method. Since the prompt-jump approximation shows such good agreement with the unmodified point-kinetics equations, it follows that it is the matrix decoupling algorithm that is inaccurate, rather than the unmodified pointkinetics equations. The reasons for this are still unclear,




coupling algorithm and feedback. Initial power 2000 MW, 10 cents reactivity step insertion, U-235 fuel


and are a possible subject for further research.

Figures 6 and 7 show a run of the ramp-input model. Initial power was 2000 MW. The ramp-input was 0.5 cents per second for 20 seconds, for a total reactivity insertion of 10 cents. The point-kinetics equations are used. Figure 7 runs for a total of 3 minutes, Figure 6 for 1 minute. The noteworthy aspect of both figures is that both reactor power and steam generator power show smooth responses, without the abrupt changes that are evident in Figure 1. Note too that reactor power changes in a given time period are not as great with the ramp-input as with a step insertion of the same quantity of reactivity. This is because the prompt jump gives a massive "head start" of power when a step insertion versus a ramp insertion is used. Eventually, the same power levels will be achieved by either method.

Figure 8 shows the solution of the point-kinetics equations for a step insertion of 10 cents of reactivity with no feedback and no reactor control system. Note the very smooth reactor power response even though the steam generator response is as abrupt as ever. Figure 9 shows the same situation, only with the prompt-jump approximation. Note that its reactor power response is almost identical to that in Figure 8; it is only slightly higher, as would be

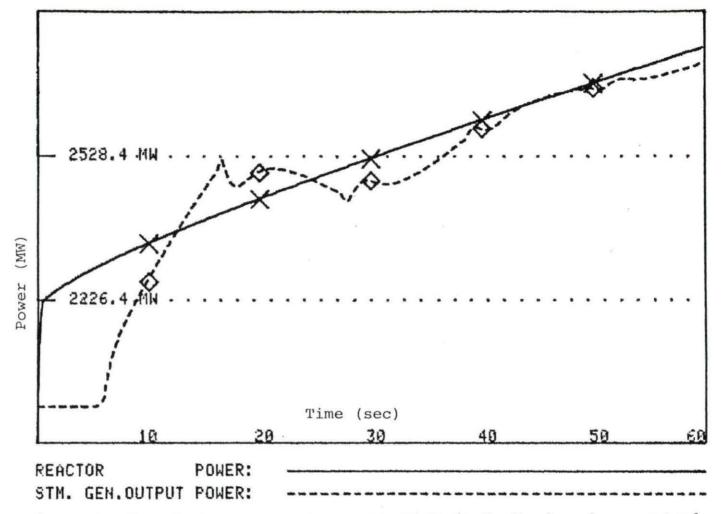
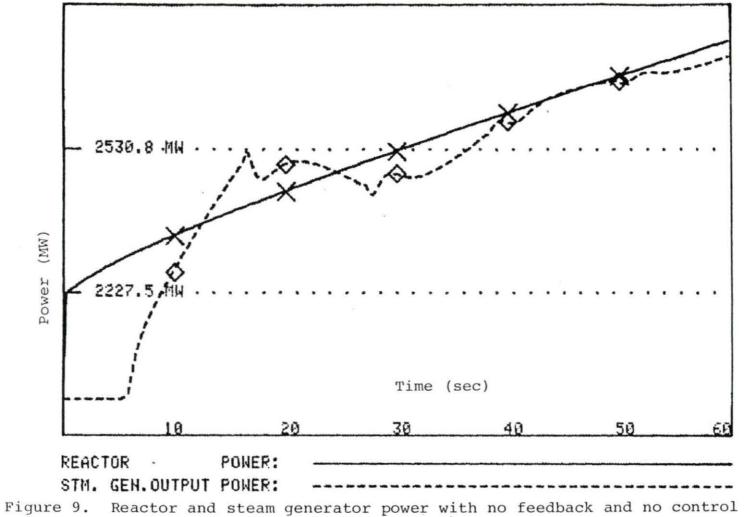



Figure 8. Reactor and steam generator power with no feedback and no control system. Initial power 2000 MW, 10 cents reactivity step insertion, U-235 fuel

system and using the prompt-jump approximation

expected.

Figures 10 and 11 show the effects of a reactor control system. A step insertion of 2000 MW was used with a step insertion of 10 cents of reactivity. In Figure 10 a control system with a gain of -1.10^{-7} units of reactivity per degrees-second. In Figure 11, the gain is -1.10^{-6} . Comparison with Figure 1 shows that use of a reactor control system results in a lesser power rise for a given positive reactivity insertion than without one. It also shows that the greater the gain, the greater the power reduction. This is what would be expected with a reactor control system.

Figure 12 shows an example of load following. At time equals 5 seconds, the throttle valve on the secondary side of the steam generator is opened 10%, thus, allowing flow on the secondary side to rise 10%. Initial power is 2000 MW. This results in greater heat transfer, causing greater steam generator power output. At the same time, the lowered reactor inlet temperature causes lower average moderator and fuel temperatures, causing increased reactor power through feedback. As can be seen, reactor power rises dramatically, but never quite matches steam generator power. The reason is that as reactor power starts rising, feedback starts acting to keep it down. Further power rises after the prompt jump are very slow. Eventually, the steam generator power and reactor power

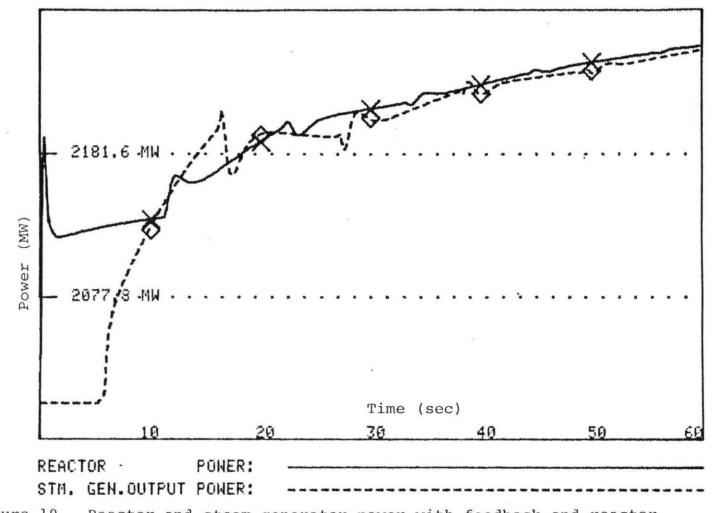
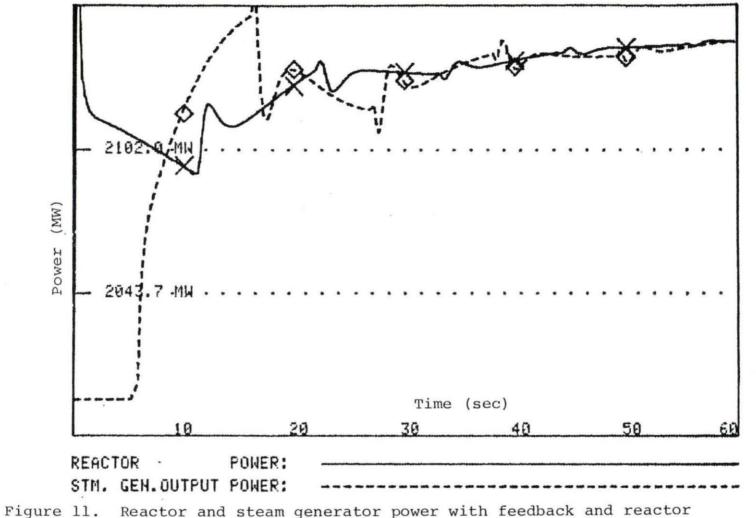
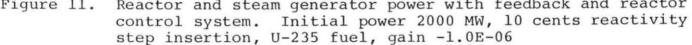




Figure 10. Reactor and steam generator power with feedback and reactor control system. Initial power 2000 MW, 10 cents reactivity step insertion, U-235 fuel, gain -1.0E-07

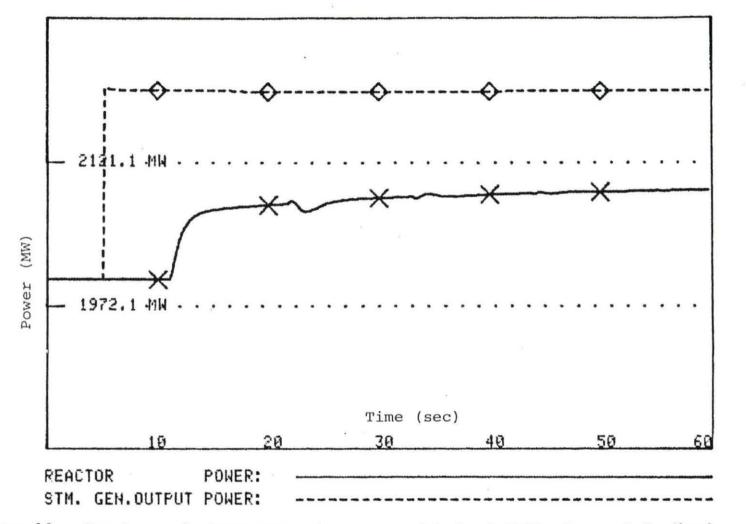


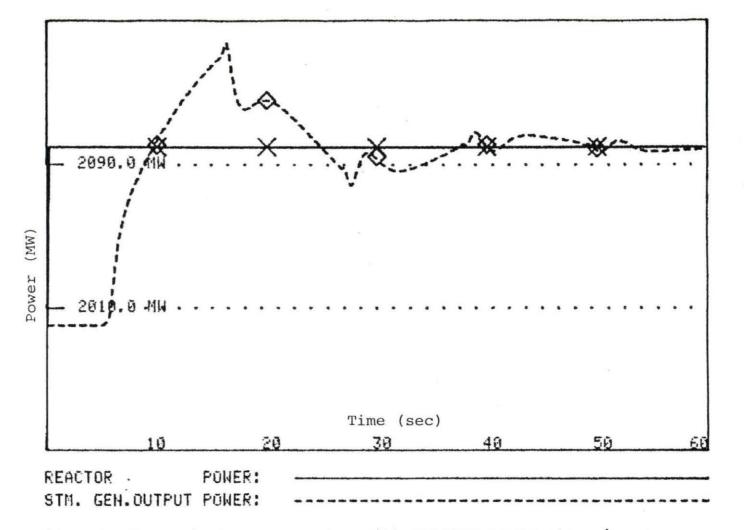
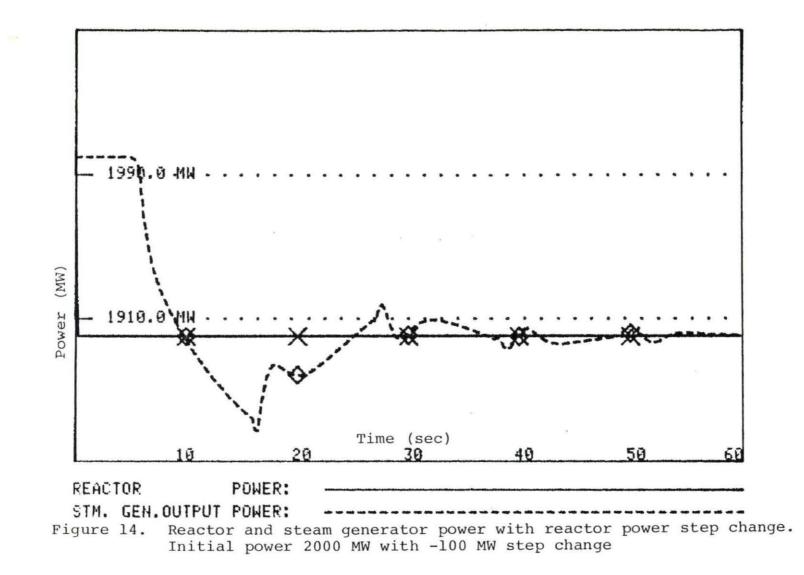
Figure 12. Reactor and steam generator power with load following and feedback. Initial power 2000 MW, throttle valve opened 10%, U-235 fuel

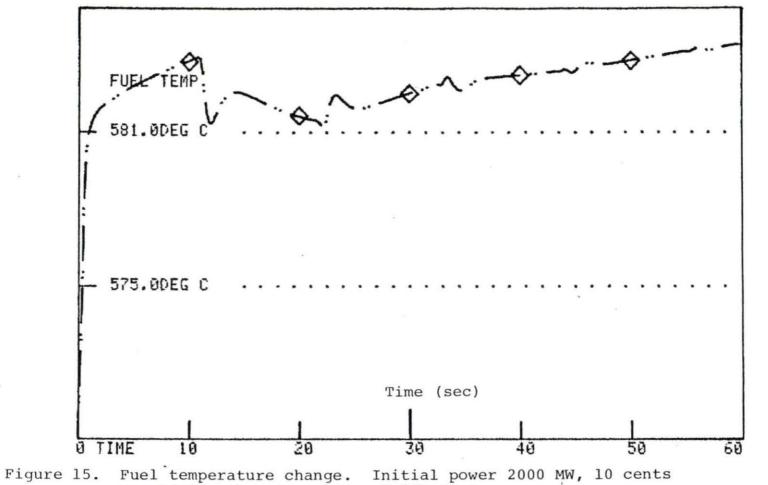
should approximately equal each other, but not until a long interval has passed.

Figures 13 and 14 feature steam generator response to a step change in reactor power. Note that in these figures, reactor power is constant and the steam generator responds to the new power level.

In Figure 13, reactor power jumps from 2000 MW to 2100 MW. After the five-second lag from reactor to steam generator, steam generator power rises to the reactor power level and exceeds it for a time. This reflects the fact that over a period of time, total steam generator energy output must equal reactor energy output. Since during the first 10 seconds reactor power is greater than steam generator power, steam generator power must exceed reactor power for a brief time in order to compensate for the energy deficit that occurred during the first 10 seconds. As can be seen in Figures 13 and 14, eventually steam generator power converges toward the new reactor power level.

Since total energy output over a period of time from both steam generator and reactor should be equal over a period of time, it follows that the integrals of their power functions - that is, the "areas under the curves" should be equal. Inspection of Figure 13 shows that this is not quite so. The reason is probably that in increasing


Figure 13. Reactor and steam generator with reactor power step change. Initial power 2000 MW with 100 MW step change

steam generator power, primary side temperature is increased and this requires some of the energy that would otherwise have gone to increase steam generator output power.

Figure 15 depicts reactor fuel temperature. Initial power was 2000 MW, U-235 fuel was used, and a reactivity step of 10 cents was inserted. Several features are noteworthy. First, fuel temperature does show a "prompt jump" in temperature, but no falloff from a peak level. This is because fuel temperature does not rise as quickly as reactor power during the prompt jump. After the reactor inlet temperature starts declining at 11 seconds, average moderator temperature also declines, forcing a drop in fuel temperature. As can be seen by comparing Figures 15 and 16, fuel temperature responses are a function of average moderator temperature changes. Eventually, fuel temperature increases slowly as a result of slowly increasing reactor power even though the average moderator temperature change is decreasing very slowly.

Figure 16 shows changes in reactor inlet temperature, outlet temperature, and average moderator temperature from an initial condition. Initial power level was 2000 MW with a reactivity insertion of 10 cents, and U-235 fuel. Under steady-state conditions, outlet and inlet

reactivity step insertion, U-235 fuel

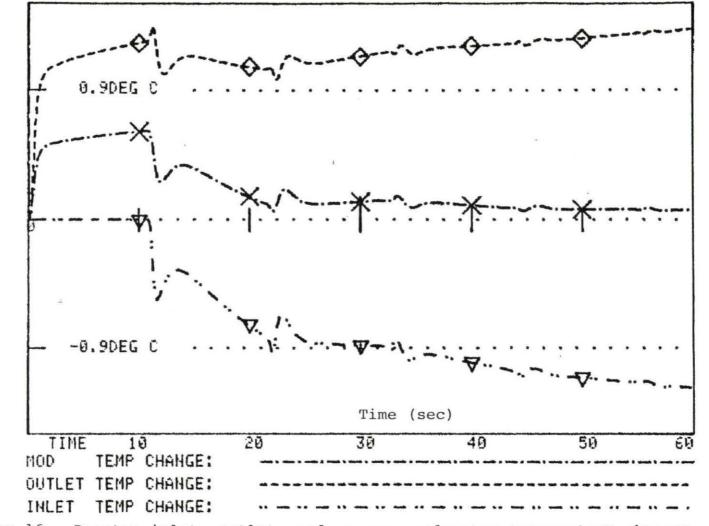


Figure 16. Reactor inlet, outlet, and average moderator temperature changes. Initial power 2000 MW, 10 cents reactivity step insertion, U-235 fuel

temperature changes should be equal and opposite in sign, and moderator temperature change should be zero. However, since the reactor inlet temperature change is the result of steam generator actions, any reactor perturbation has no effect on inlet temperature until 11 seconds later. At 11 seconds, reactor inlet temperature drops suddenly, as a result of the steam generator power increase that took place 6 seconds earlier.

Since there has been no change in reactor inlet temperature, reactor outlet temperature change is twice as large as it would have been in the presence of reactor inlet temperature change. Also, the moderator temperature change is not equal to zero. At 11 seconds, however, reactor inlet temperature does start to change. It affects moderator temperature relatively slowly, as the noncoolant sections of the core must also be cooled. Due to the construction of the thermal-hydraulic equations, it affects output temperature immediately, which accounts for the brief outlet temperature increase at 11 seconds. (This also leads to a brief steam generator power pulse at 16 seconds, as is seen in Figure 1). This is probably not an accurate reflection of the way a real reactor core works, but this error is induced by the fact that a simple model is used. In any event, this error dampens itself out.

Note that the reactor inlet temperature at 11 seconds

drops suddenly, rises back somewhat, then declines again. This pattern repeats itself every 11 seconds, although it does dampen out. The reason for the rise after the drop is that the steam generator adjusted power based on the difference between actual outlet temperature and what it would be if the reactor inlet temperature change did not have the 11-second lag. After the prompt rise in outlet temperature, the downward pressure on reactor inlet temperature is no longer so great, and inlet temperature tends to rebound.

Overall, as Figure 16 shows, average moderator temperature change does tend to converge back toward zero after a perturbation, and reactor outlet and inlet temperatures do tend to become equal and opposite.

VII. SUMMARY AND CONCLUSIONS

The programs developed provide a good simulation of a nuclear power plant system that can be used in a classroom environment. Except for the two-time-scale matrix decoupling algorithm, all of the models used show consistent results. The programs can be used to simulate many different situations with output in whatever form desired.

The major disappointment was the poor performance of the two-time-scale matrix decoupling algorithm. Use of it yielded results that were in disagreement with the results of the other methods of solving for reactor kinetics by 50%. Perhaps further research would indicate the reasons for this.

One possible indication of error lies in the speed with which the steam generator can change its power level. While the reactor undoubtedly can change its power level quickly, it does seem unlikely that the steam generator can raise its power level 200 MW in 10 seconds, as Figure 1 indicates. Perhaps one reason why the program indicates this is that the steam generator subroutine DMTN assumes that fluid flow rates on the secondary side can change instantaneously every 0.2 seconds. This may not be a valid assumption, especially since the

secondary side of the steam generator provides the feed steam for the turbine coupled to the electric generator, and the turbine certainly cannot change its power levels as quickly as can the reactor. This could be another area for further investigation.

One suggestion for changing the computer programs that form the basis of this thesis is to vary the delays between the reactor and the steam generator. This would be an easy change to make, and would add another element of variability for the user.

Another possible area of improvement would be the use of predictor-corrector methods for solving the point-kinetics equations. The point-kinetics equations constitute a system of stiff differential equations; that is, a system dominated by one large eigenvalue. Such systems undergo a prompt response, followed by a much slower response. After the prompt response, the variables all vary slowly, and comparatively large time steps can be used.

The concept of using short time steps during the prompt response and larger time steps after the prompt response is being utilized now; however, the use of predictor-corrector methods would provide a quantitative measure of how large the time steps can be before encountering intolerable error.

As satisfactory solutions are being obtained now, without the use predictor-corrector methods, use of them would not appreciably improve the quality of the solutions obtained and would quite possibly increase the size of time steps, and reduce the number of computations and any progressive error.

In general, the programs associated with this thesis are a useful learning tool for their users and are sufficiently versatile to allow extensive modifications and improvements to be made.

VIII. LITERATURE CITED

- Anderson, Leonard. 1978. Decoupling of Two-Time-Scale Linear Systems. Aerospace and Mechanical Engineering Department, University of Arizona, Tucson, Arizona.
- Babcock & Wilcox Company. 1975. Steam/Its Generation and Use. Babcock & Wilcox Company, New York.
- Danofsky, Richard A. 1975. Reactor with a Control System and Reedback. Department of Nuclear Engineering, Iowa State University, Ames, Iowa.
- Detroit Edison Company. 1973. Greenwood Preliminary Safety Analysis Report. Detroit Edison Company, Detroit, Michigan.
- Duderstadt, James J., and Hamilton, Louis J. 1976. Nuclear Reactor Analysis. John Wiley and Sons, Inc., New York.
- El-Wakil, M. M. 1971. Nuclear Heat Transport. American Nuclear Society, Lagrange Park, Illinois.
- Hetrick, David L. 1971. Dynamics of Nuclear Reactors. University of Chicago Press, Chicago, Illinois.
- Hetrick, D. L., Girijashankar, P. V., Keepin, W. N., Palusinski, O. A. 1981. A Technique for Efficient Simulation of Large Dynamic Systems. Paper presented at USNRC-EPRI Conference titled "Simulation Methods for Nuclear Power Systems". University of Arizona, Tucson, Arizona.
- Karlekar, Bhalchandra V., and Desmond, Robert M. 1977. Engineering Heat Transfer. West Publishing Company, St. Paul, Minnesota.
- Keenan, Joseph H., and Keyes, Frederick G. 1937. Thermodynamic Properties of Steam. John Wiley and Sons, New York.

- 11. Schultz, M. A. 1961. Control of Nuclear Power Plants, 2nd edition. McGraw-Hill, New York.
- 12. U.S. Atomic Energy Commission. 1964. Naval Reactors Physics Handbook. U.S. Government Printing Office, Washington, D.C.

IX. ACKNOWLEDGMENTS

The author greatly acknowledges the kind, patient assistance of Professor Richard A. Danofsky in the pursuit of this study. Not only were his suggestions usually invaluable, but his refusal to accept shortcuts made this a better work than it otherwise may have been. Special thanks are also in order for Professors G. W. Burnet, D. M. Roberts, and R. J. Lambert.

Finally, the author wishes to thank his family for their constant encouragement and help.

X. APPENDIX A: USER'S GUIDE

The simulation of a nuclear power plant accomplished by this program is a versatile system whose performance can be controlled by the user.

The user can select the kind of system he or she desires by responding to prompting from the computer. The computer will write messages across the screen of the terminal that the user is operating, describing the choice(s) the user is about to make, and then inviting him/her to make a choice. The choice is made by typing in an appropriate number, then pressing the carriage return key (<CR>). Choices made outside permissible parameters are rejected, and the user must select again.

Many of the parameters of the power plant, for instance those of the reactor control system, have default values; that is, values that the parameters automatically assume even if the user takes no action.

The user can select the following options and parameters:

1. Reactor fuel isotope used.

This includes uranium 233 (U-233), uranium 235 (U-235), and plutonium 239 (Pu-239).

 Whether feedback is desired, and if so, the values of the reactivity coefficients.

3. Whether a reactor control system (RCS) is desired, and if so, the values of the parameters of gain, the differential controller, and the integral controller.

 Whether the system is operated with free kinetics, no feedback and no automatic RCS.

5. The magnitude of any reactivity step and of any pre-perturbation reactivity. Total reactivity must be greater than -90 cents and less than +90 cents.

 Whether the two-time-scale matrix decoupling algorithm is to be used.

Whether the prompt-jump approximation is to be used.

8. Whether the ramp-input model is to be used, and if so, the magnitude of the ramp and the duration of its run.

9. Whether a simple power step is to be inserted that uses no reactor kinetics at all, and if so, the magnitude of this step.

10. Whether a steam generator throttle valve change is to be made, and reactor power to be changed only by the feedback effects caused by the throttle valve change. Within limits, the magnitude of the throttle valve change is selected by the user.

11. Whether output is to be in a table or in a graph.

12. Whether output is to be printed on paper, or on a computer terminal.

13. If tabular output is selected, whether it is to be displayed in abbreviated format.

14. Whether the duration of the program run is to be lengthened anywhere from one to five minutes.

After the user makes all the selections, a summary of selections is written on the computer screen. A printed copy of this summary can be made.

Program output can be in one of four forms: output in a table on the computer screen, output in a table that is printed on paper, graphics output on a terminal, and printed graphics output.

To obtain any kind of output, first the program must be run. To do this, log on to any VAX terminal and type in the phrase RUN NERO. All computer promptings and user responses are made on the computer terminal.

Table output on the screen is the simplest to obtain. The user responds to all computer promptings. After this is done, the computer program will simply run its course, on the screen. No additional user action is necessary.

Printed table output is almost as easily obtained. Any printed table output must utilize one of the Computer

Science Center printer queues, for instance, queue BC0131U in Coover Hall. The print option is selected by the user when the program prompts him to choose between terminal output and printed output. If printed output is selected, the output will initially be stored in a data file. To print the contents of this data file, type in PRINT FOR.008.DAT/Q = (name of queue). For instance, if queue BC0131U is the printer of choice, type in PRINT FOR008. DAT/Q = BC0131U. (Do not include the period at the end of the last sentence!)

For graphics output that appears on screen only, any Tektronix 4051 terminal or any of the light blue terminals labeled "GRAPHICS" can be used. As with table output that appears on screens only, graphics output is selected as a result of user responses to computer promptings. Once this is done, the computer program will run its course, on the screen. No additional user action is necessary.

For printed graphics output, the user must be logged on a Tekronics 4051 unit. The 4051 unit is actually a microcomputer that can be turned into a VAX terminal. This must be done to obtain a graphics display.

The following steps are needed to turn the 4051 unit into a VAX terminal.

1. Turn the power on.

 After power comes on, press the HOME PAGE key to clear the screen.

 Insert the casette tape labeled "MARK'S EASY LOGON".

4. Press the AUTO LOAD key.

5. Eject the tape after the I/O light goes off.

The user should now be able to log into the VAX system.

There are two ways to get printed output. The easier way is to use the Tektronix hard copy printer. This is basically a photoreproduction machine that exactly duplicates whatever is on the screen of the 4051 unit at any given time. It can reproduce other things than graphics, too; for instance, any table output.

To use, simply tie this machine into a 4051 terminal and press the lighted button whenever you see something on the screen of the 4051 unit you would like duplicated.

NOTE WELL! Before any graphics is displayed, the program will ask you whether you want a "4662 copy" or not. To use this machine, write in 2 to indicate you do <u>not</u> want a "4662 copy". Here, the term "4662 copy" refers to the output of the 4662 plotter. Since the Tektronix hard copy printer is basically an extension of the 4051 unit, it does not come under the category of "4662 copy", as defined by this program.

To use the 4662 plotter, one must log on with a 4051 unit, as before. Then the 4662 unit must be activated, which is done in the following manner:

1. Turn the machine on.

2. Place paper down.

3. Press the LOAD button to down position.

4. Smooth the paper.

5. Press LOAD button to high position.

6. Set the lower left limit of the paper. Use the joystick to position the pen to the right place, then push the set button until it beeps.

7. Do the same with the upper right position.

In order to plot anything, the LOAD button must be in the down position.

It is possible to get printed copies of both the summary of user's selections, and graphics. One can simply use the hard copy machine, or one can create and print a data file. Since graphics is selected, no table output will appear, but the summary normally preceding it will.

The following are general hints that may contribute toward more efficient use of this program:

 The 4051 unit has no scrolling capability. That is, once the screen is filled up with characters, nothing more will happen until the user erases everything on the

screen by pressing the HOME PAGE button.

 In graphics, sometimes the "output" will stop by itself. It can be resumed by pressing carriage return (<CR>).

3. The user can stop further output from appearing on a screen by pressing the CNTRL key and the S key simultaneously. Pressing CNTRL Q will start the output once again. Pressing CNTRL Y will kill the entire computer run.

4. When prompting the user to input parameters, the program will direct the format to be used. Be sure to follow the format rules exactly.

Table 3 lists the parameters that can be varied by the user. Their default values plus the lower and upper limits inside which the user may vary them are also listed.

The following format changes can be inserted by the user. First, table output by default occurs at an interval of 0.2 seconds. This interval can be changed to 1 second, 2 seconds, 4 seconds, 5 seconds, and 10 seconds. Second, the computer run by default lasts for 1 minute of world time. This can be lengthened to 2 minutes, 3 minutes, 4 minutes, or 5 seconds.

Some of the parameters have additional restrictions. Initial power plus power step must not exceed 3000 MW.

Parameter	Default value	Lower limit	Upper limit	
Doppler coefficient of reactivity for U-233 (a _f)	-1.07E-05 (δk/k)/C	-0.001 (δk/k)/C	+0.001 (δk/k)/C	
Doppler coefficient of reactivity for U-235 (a _f)	-2.61E-05 (δk/k)/C	-0.001 (δk/k)/C	+0.001 (δk/k)/C	
Doppler coefficient of reactivity for Pu-239 (α_{f})	-0.85E-05 (δk/k)/C	-0.001 (δk/k)/C	+0.001 (δk/k)/C	ž
Moderator coefficient of reactivity (α_m)	-8.6E-06 (δk/k)/C	-0.0001 (δk/k)/C	+0.0001 (δk/k)/C	
Pre-perturbation reactivity (ρ_0)	0	-90 cents	+90 cents	
Reactivity perturbation (δρ)	0	-90 cents	+90 cents	
Control system gain (A)	-1.0E-06 reactivity/ (unit error -second)	O	4.0E-06 reactivity/ (unit error -second)	

Table 3. U	ser-selected	parameters,	their	default	valves	and	lower	and	upper	limits
------------	--------------	-------------	-------	---------	--------	-----	-------	-----	-------	--------

×

.

×

(8) u

Control system parameter tau (T)	5 seconds	2 seconds	20 seconds
Control system time constant (T _C)	5 seconds	2 seconds	20 seconds
Ramp insertion rate (reactivity per second)	0	-10 cents/s	+10 cents/s
Duration of ramp insertion	0	none	none
Initial power level (no)	-	0 MW	3000 MW
Power step change	-	0 MW	3000 MW
Throttle valve change	0	-10% of initial setting	+10% of initial setting

Pre-perturbation reactivity plus reactivity perturbation must not exceed plus or minus 90 cents. Ramp insertion rate times duration of ramp must not result in a total reactivity greater than plus or minus 90 cents.

Any attempt to vary the parameters outside the limits listed in Table 3 will result in the choice being rejected. The user will then have the opportunity to select again. XI. APPENDIX B: PROGRAM LISTING

MAIN PROGRAM NERO C THIS IS THE MAIN PROGRAM NERO. IN THIS PROGRAM THE USER SE-LECTS THE PARAMETERS AND OPTIONS TO FIT THE SYSTEM WHOSE BEHAVIOR HE OR SHE WISHES TO EXAMINE. SOME OF THESE CHOICES ARE INCLUDED INCLUDED IN THE COMMON BLOCK AND CONTROL THE BEHAVIOR OF THE SUBROUTINES. OTHERS CONTROL THE FORMAT OF THE OUTPUT. CONTROLS REACTOR KINETICS. THE SUBROUTINE GALBA CONTROLS HEAT TRANSFER IN THE REACTOR THE SUBROUTINE OTHO CORE. SUBROUTINE VESPASIAN CONTROLS OUTPUT GRAPHICS. THE CONTROLS THE STEAM GENERATOR MODEL. SUBROUTINE DMTN THE THE SUBROUTINE CLINQ ARE PORTLIBRARY SUBROUTINE EIGEN AND THE SUBROUTINES USED IN GALBA TO COMPUTE EIGENVALUES, AND FUNDAMENTAL EIGEN-VECTOR MATRICES AND THEIR INVERSES. ALL DIMENSIONS ARE DEFINED IN THE SI SYSTEM OF MEASUREMENTS. THE FOLLOWING VARIABLES ARE USED IN THE COMMON BLOCK: IS THE GAIN OF THE REACTOR CONTROL SYSTEM. AA DOPPLER COEFFICIENT OF REACTIVITY. MODERATOR COEFFICIENT OF REACTIVITY. 1X6 ARRAY FOR THE 6 GROUPS OF DELAYED-NEUTRON ALPHE IS THE ALPHM THE THE B PRECURSORS. AVERAGE HEAT CAPACITY OF THE REACTOR COOLANT. IT IS SLIGHTLY A FUNCTION OF REACTOR POWER. VARIABLE WHOSE VALUE, SELECTED BY THE USER, DETERMINES A REACTOR CONTROL SYSTEM IS USED. DIFFERENCE BETWEEN CURRENT REACTOR POWER AND CPPAV IS THE CS IS THE THE DN1 INITIAL (STEADY-STATE) POWER. THE DIFFERENCE BETWEEN CURRENT REACTIVITY INITIAL (STEADY-STATE) REACTIVITY. DRO IS THE AND THE DIFFERENCE BETWEEN CURENT FUEL TEMPERATURE AND DTF THE INITIAL (STEADY-STATE) TEMPERATURE. THE DIFFERENCE BETWEEN CURRENT REACTOR INLET TEMP. DTI THE AND INITIAL (STEADY-STATE) TEMPERATURE. DIFFERENCE BETWEEN CURRENT MODERATOR TEMPERATURE DTM IS THE AND THE INITIAL (STEADY-STATE) TEMPERATURE. DIFFERENCE BETWEEN CURRENT REACTOR OUTLET T TEMP. DTO IS THE AND INITIAL (STEADY-STATE) TEMPERATURE. IS THE DIFFERENCE BETWEEN CURRENT TEMPERATURE OF THE SECONDARY SIDE OF THE STEAM GENERATOR AND THE DTS INITIAL (STEADY-STATE) TEMPERATURE DTSG IS THE DIFFERENCE BETWEEN CURRENT TEMPERATURE OF THE PRIMARY SIDE OF THE STEAM GENERATOR AND THE INITIAL (STEADY-STATE) TEMPERATURE. VARIABLE, SELECTED BY THE USER, WHOSE VALUE DETERMINES WHETHER THE TWO-TIME-SCALE MATRIX EIG IS THE VARIABLE. DECOUPLING ALGORITHM IS USED IN GALBA TO COMPUTE REACTOR KINETICS. TIME STEP USED IN THE SUBROUTINES. IS THE IS ALLOWED H TO VARY FROM SUBROUTINE TO SUBROUTINE. IS THE VARIABLE, SELECTED BY THE USER, WHOSE VALUE

5 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-				DETERMINES WHICH ISOTOPE OF FISSILE MATERIAL
01450	0058	CC				WILL BE USED. ISOTOPES USED CAN INCLUDE U-233,
01475	0059	č				U-235, PU-239,
01500	0061	c	К	15	THE	SUBSCRIPT OF THE ARRAYS USED IN DEPICTING
01550	0062	č				OUTPUT, WHETHER IN A TABLE OR IN GRAPHICS. IT
01575	0063	C				REPRESENTS TIME INCREMENTS OF 0.2 SECONDS. IT
01600	0064	C				IS ALSO USED IN SOME SUBROUTINES AS A "TIMER",
01625	0065	CC				WHOSE VALUE CAN TRIGGER CERTAIN EVENTS.
01650	0066	С	KF	15	THE	VARIABLE, SELECTED BY THE USER, WHOSE VALUE
01675	0067	C				DETERMINES WHETHER NO REACTOR CONTROL SYSTEM
01700	0068	č				AND NO REACTOR FEEDBACK IS USED.
01725	0069	C	LMB	15	THE	1X6 ARRAY FOR THE 6 GROUPS OF DELAYED-NEUTRON
01750	0070	C	WEATA	10	THE	DECAY COEFFICIENTS. MASS FLOW RATE OF REACTOR COOLANT. IT IS
01775	0071	C	MDOTP	15	THE	SLIGHTLY A FUNCTION OF INITIAL REACTOR POWER.
01800	0072	C	NK	15	THE	VARIABLE, SELECTED BY THE USER, WHOSE VALUE
01825	0073	CC	N.N.	13	INC	DETERMINES WHETHER REACTOR KINETICS IS USED,
01850	0074	č				OR WHETHER A SIMPLE POWER STEP IS POSTULATED.
01875	0076	c	NN	15	THE	VARIABLE, SELECTED BY THE USER, WHOSE VALUE
01925	0077	č				DETERMINES WHETHER THE OUTPUT IS IN A TABLE
01950	0078	C				OR IN GRAPHICS.
01975	0079	C	N10	15	THE	INITIAL POWER LEVEL OF THE REACTOR.
02000	0080	C	PJ	15	THE	VARIABLE, SELECTED BY THE USER, WHOSE VALUE
02025	0081	C				DETERMINES WHETHER THE PROMPT-JUMP APPROXIMATION
02050	0082	С			-	IS USED OR NOT.
02075	0083	C	RI	15	THE	VARIABLE, SELECTED BY THE USER, WHOSE VALUE
02100	0084	С				DETERMINES WHETHER THE RAMP-INPUT MODEL IS USED
02125	0085	C			-	OR NOT.
02150	0086	C	RIR	IS	THE	RAMP-INPUT RATE.
02175	0087	č	RHO	15	THE	INITIAL (STEADY-STATE) AMOUNT OF REACTIVITY. TOTAL REACTOR POWER AT ANY GIVEN TIME. THIS IS
02200	0088	cc	RP	15	INC	USED IN DMTN AS A CRITERION FOR DECIDING HOW
02225	0089	c				MUCH TO ALTER SECONDARY SIDE FLUID FLOW IN ORDER
02250	0090	č				COUNTERACT ANY PERTURBATION CAUSED BY ALTERED
02300	0092	č				REACTOR POWER.
02325	0093	č	STMGEN	15	THE	STEAM GENERATOR OUTPUT POWER.
02350	0094	č	TAU	IS	ONE	OF THE REACTOR CONTROL SYSTEM (RCS) PARAMETERS.
02375	0095	C				THIS ONE IS USED TO ADJUST THE INTEGRAL
02400	0096	С				CONTROLLER.
02425	0097	C	TAUC	15	ONE	OF THE RCS PARAMETERS. THIS ONE IS USED TO
02450	0098	C				ADJUST THE DIFFERENTIAL CONTROLLER.
02475	0099	С	TF1	15	THE	INITIAL FUEL TEMPERATURE.
02500	0100	С	TM1	15	THE	INITIAL MODERATOR TEMPERATURE. ALWAYS EQUALS
02525	0101	С				313.89 DEG. C.
02550	0102	C	TT	15	THE	TOTAL TIME. IT IS AN ARRAY WHOSE VALUES FORM
02575	0103	CC			THE	INDEPENDENT VARIABLE (THE "X-AXIS") IN GRAPHICS AND IS PRINTED IN THE TABULAR OUTPUT AS WELL.
02600	0104	c	TTOT	1.6	THE	TOTAL AMOUNT OF TIME THAT THE RAMP INPUT IS IN
02625	0105	c	TTOT	15	INC	EFFECT.
02675	0107	c	VO	15	THE	FRACTIONAL AMOUNT OF OPENING OF THE THROTTLE
02700	0108	C	•0	15	THE	VALVE ON THE SECONDARY SIDE OF THE STEAM
02725	0109	C				GENERATOR.
02750	0110	č	VOSS	15	THE	FRACTIONAL AMOUNT OF THE TOTAL OPENING OF THE
02775	0111	C	100000	10050	19171997	THROTTLE VALVE ON THE SECONDARY SIDE OF THE
02800	0112	C				STEAM GENERATOR, BEFORE ANY CHANGES ARE APPLIED.
02825	0113	C	Y	15	THE	NUMBER THAT CHANGES BY ONE EVERY 0.2 SECONDS.
02850	0114	С				ITS FUNCTION IS THAT IT ALLOWS INITIALIZATIONS

		0				TO BE MADE IN GALBA DURING THE FIRST 0.2 SECONDS
02875	0115	C C				ONLY.
02900	0117	č	ZZ	15	THE	VARIABLE, SELECTED BY THE USER, WHOSE VALUE
02950	0118	C				DETERMINES WHETHER THROTTLE VALVE POSITION IS TO
02975	0119	C				BE PERMANENTLY FIXED, AFTER IUT IS PERTURBED
03000	0120	C				FROM SOME STEADY-STATE VALUE.
03025	0121	С				ACT WARLAR OF ARE USED IN NERO.
03050	0122	C	THE FOL	LOV	AING	REAL VARIABLES ARE USED IN NERO:
03075	0123	C		10	THE	SUMMATION OF THE 6 GROUPS OF DELAYED-NERUTRON
03100	0124	C	A	15	INC	PRECURSORS.
03125	0125	č	ABN	15	THE	TIME INTERVAL AT WHICH TABULAR OUTPUT IS
03175	0127	č	1.202-02			PRINTED.
03200	0128	č	ALPHES	15	THE	VARIABLE THAT RETAINS THE PREVIOUS VALUE FOR
03225	0129	C				ALPHF, IN CASE THE USER LATER DECIDES NOT TO
03250	0130	C				CHANGE IT AFTER ALL.
03275	0131	C	ALPHMS	15	THE	VARIABLE THAT RETAINS THE PREVIOUS VALUE FOR
03300	0132	C				ALPHM, IN CASE THE USER LATER DECIDES NOT TO
03325	.0133	С				CHANGE IT AFTER ALL.
03350	0134	C	CPM	15	THE	HEAT CAPACITY OF THE REACTOR COOLANT, USED IN
03375	0135	C	0000	1.0	THE	COMPUTING THE HEAT TRANSFER COEFFICIENT. REACTIVITY PERTURBATION, IN CENTS.
03400	0136	C	DRON DVO	15	THE	VALVE PERTURBATION ON THE SECONDARY SIDE OF THE
03425	0137	c	DVU	15	INC	STEAM GENERATOR, IN PERCENT. AFTER CONVERSION
03450	0138	c				TO A DECIMAL, IT IS ADDED TO THE STEADY-STATE
03475 03500	0139	c				QUANTITY.
03525	0141	c	FRAC	15	THE	VARIABLE USED IN DETERMINING THE REACTOR COOLANT
03550	0142	č	1 1110			TEMPERATURE SO THAT THE HEAT TRANSFER COEFFI-
03575	0143	00000				CIENT CAN BE COMPUTED. IT ABOUT EQUALS 0.5, BUT
03600	0144	C				VARIES SLIGHTLY BECAUSE HEAT CAPACITY DOES NOT
03625	0145	С				VARY LINEARLY WITH TEMPERATURE.
03650	0146	С	HP	15	THE	HEAT TRANSFER COEFFICIENT FOR THE REACTOR
03675	0147	c			-	COOLANT.
03700	0148	C	KP	15	THE	THERMAL CONDUCTIVITY OF THE REACTOR COOLANT.
03725	0149	С	LNT			TOTAL TIME THAT THE PROGRAM WILL RUN, IN MINUTES
03750	0150	C	MUP			DYNAMIC VISCOSITY OF THE REACTOR COOLANT NUSSELT NUMBER OF THE REACTOR COOLANT.
03775	0151	С	NU			NUSSELT NUMBER OF THE REACTOR COOLANT. KINEMATIC VISCOSITY OF THE REACTOR COOLANT.
03800	0152	C	NUP			TOTAL REACTOR POWER, IN MW, AND IS PRINTED IN
03825	0153	CC	N110	15		TABULAR OUTPUT.
03850	0154	c	PROD	15	THE	TOTAL AMOUNT OF REACTIVITY IN THE RAMP-INPUT
03900	0156	c	TROD	10	1.110	MODEL, IN CENTS.
03925	0157	č	PRP	15	THE	PRANDTL NUMBER OF THE REACTOR COOLANT.
03950	0158	č	REP			REYNOLDS NUMBER OF THE REACTOR COOLANT.
03975	0159	C	RHON	15	THE	PRE-PERTURBATION REACTIVITY (USUALLY ZERO),
04000	0160	C				IN CENTS.
04025	0161	C	ROP			DENSITY OF THE REACTOR COOLANT.
04050	0162	C	STMG	15	THE	CURRENT STEAM GENERATOR OUPUT, IN MW. IT IS
04075	0163	С		1.000		WHAT IS PRINTED IN THE TABULAR OUTPUT.
04100	0164	С	TC			AVERAGE CLADDING SURFACE TEMPERATURE.
04125	0165	С	TF			AVERAGE FUEL TEMPERATURE.
04150	0166	C	TII			INITIAL REACTOR INLET TEMPERATURE.
04175	0167	C	TO1			INITIAL REACTOR OUTLET TEMPERATURE. TIME MEASURE DETERMINING WHETHER NERO WILL
04200	0168	C	TOTHO	13	INC	PASS CONTROL FROM OTHO TO GALBA. AT THE END
04225	0169 0170	c				OF EVERY 0.2 SECOND INTERVAL, IT WILL NOT; AT
04275	0171	c				ALL OTHER TIMES IT WILL. THIS IS SO ACCURATE
04212	0.11					And entres thinks it states that the second se

REACTIVITY CALCULATIONS AFFECTING FEEDBACK CAN CC BE MADE. AVERAGE FUEL MODERATOR TEMPERATURE. IT IS TM IS THE PRINTED IN TABULAR OUTPUT. IS THE INTERVAL AT WHICH TABULAR OUTPUT IS PRINTED. IS THE VELOCITY OF FLUID FLOW WHILE IN THE CORE. TW VMOD THE FOLLOWING ARE INTEGER VARIABLES: IS THE VARIABLE, SELECTED BY THE USER, WHOSE VALUE DETERMINES WHETHER THE OUTPUT ABBREVIATION AB OPTION IS TO BE USED. IS THE VARIABLE, SELECTED BY THE USER, WHOSE VALUE DETERMINES WHETHER ANY OR ALL OF THE REACTIVITY ALA DETERMINES WHETHER ANY OR ALL OF THE REACTIVE COEFFICIENTS WILL BE VARIED. IS THE VARIABLE, SELECTED BY THE USER, WHOSE VALUE DETERMINES WHETHER THERE IS TO BE A CHANGE IN ANY OF THE REACTOR CONTROL SYSTEM PARAMETERS. IS THE VARIABLE, SELECTED BY THE USER, WHOSE VALUE DETERMINES WHETHER THE GAIN PARAMETER OF THE RCS WILL BE ALTERED. IS THE VARIABLE, SELECTED BY THE USER, WHOSE VALUE CSC CSCG SELECTED BY THE USER, WHOSE VALUE IS THE VARIABLE. CSCG DETERMINES WHETHER THE GAIN PARAMETER WILL BE ALTERED. CSCG IS THE VARIABLE. SELECTED BY THE USER, WHOSE VALUE DETERMINES WHETHER THE GAIN PARAMETER WILL BE AL TERED. C REAL AA, ALPHF, ALPHM, ALPHP, CPPAV, DN1, DRO, H, MDOTP, N10, RHO, RIR, STMGEN, TAU, TAUC, TF1, TM1, TTOT, VO, VOSS, Y REAL ADTI(1510), ADTO(1510), DTF(1510), DTI(1510), DTM(1510), N10, + DTO (1510), DTSG(1510), DTS(1510), RP(1510), PT (1510), STMG(1510), B(6) TT (1510), INTEGER CS, EIG, F, IS, J, K, KF, LND, NK, NN, PJ, Q, RI, COMMON AA, ADTI, ADTO, ALPHF, ALPHM. CPPAV, CS, DN1, DRO, DTF, DTI, DTM, DTO, DTS, DTSG, EIG, F, H, IS, K, K LND, MDOTP, NK, NN, N10, Q, PJ, PT, RHO, RI, RIR, RP, STMG, STMGEN, TAU, TAUC, TF1, TM1, TT, TTOT, V VOSS, Y, ZZ ZZ K. KF. + RP, ST., ZZ VOSS, Y, ZZ ABN, ALPHFS, NUL NU VO. + + REAL A, ABN, ALPHFS, ALPHMS, CPM, DN2, DRON, DVO, FRAC, HP, KP, MUP, NU, NUP, N110, PROD, PRP, REP, RHON, ROP, STMGN, TC, TF, TI1, TO1, TOTHO, TM, TW, VMOD INTEGER AB, ABC, ALA, CSC, CSCG, CSCTC, CSCT, 1, LN, LNT, P, REAL + + + YY 0.0 A = C cc GENERAL COMMENTS С THE PURPOSE OF THE MAIN PROGRAM NERO IS TO CONTROL THE OPERA-TION OF THE OTHER PROGRAMS, CONTROL THE FORMAT OF THE OUTPUT, AND ESTABLISH SOME OF THE INITIAL VALUES OF THE OPERATING PARAMETERS, AND AT THE USER'S OPTION. NERO TYPICALLY OPERATES IN THE FOLLOWING MANNER: INSTRUCTIONS C TO CHOOSE A PARAMETER ARE ISSUED BY NERO. IF THE SIGNIFICANCE OF

THE PARAMETERS IS NOT IMMEDIATELY OBVIOUS, AN EXPLANATION S PRO-VIDED. THEN THE USER IS INSTRUCTED TO CHOOSE WHETHER HE OF SHE WANTS THE OPTION PRESENTED OR NOT. HE OR SHE MUST MAKE A CHOICE OR NERO WILL CHOOSE AN OPTION OR A VALUE BY DEFAULT. THEN A TEST IS APPLIED. IF THE USER'S CHOICE MEETS CERTAIN ELIGIBILITY CRI-TERIA, (THAT IS, IF THE CHOICE IS WITHIN PERMISSIBLE LIMITS) NERO JUMPS TO THE NEXT SET OF INSTRUCTIONS. IF THE CRITERIA ARE NOT MET. NERO PRINTS A MESSAGE TO THAT SEFECT. AND HUMPS PACKE S PRO-05725 0229 C 05750 0230 C C 05775 0231 THEN A TEST C 05800 0232 C 0233 05825 0234 0000 05850 0235 05875 NOT MET, NERO PRINTS A MESSAGE TO THAT EFFECT, AND JUMPS BACK-WARD AND MAKES THE USER CHOOSE AGAIN. 0236 05900 05925 0237 IN CHOOSING AN OPTION, WHEN THE USER TYPES IN 1, THE OPTION IS ELECTED; WHEN 2 IS TYPED IN, THE OPTION IS NOT SELECTED. 05950 0238 C 05975 0239 00000 0240 06000 0241 06025 HERE, THE CHOICE OF ISOTOPE IS MADE. THE USER MAY CHOOSE EITHER U-235, PU-239, OR U-233. 0242 06050 06075 0243 C 0244 06100 WRITE (6, 20) FORMAT ('0', 0245 06125 10 WHICH ISOTOPE DO YOU WISH TO UTILIZE? ') 0246 20 06150 (6, 30) 0247 WRITE 06175 FORMAT (X, ' FOR PU-239.') TYPE 1 FOR U-233. 2 FOR U-235. 3 06200 0248 30 06225 0249 + 40, IS 0250 READ 06250 06275 0251 40 FORMAT (11) 0252 06300 IF ((IS .EQ. 1) .OR. (IS .EQ. 2) .OR. (IS .EQ. 3)) GO TO 70 0253 06325 06350 0254 06375 0255 WRITE (6, 50) FORMAT (X, ' YOU HAVE TYPED IN A NUMBER THAT CANNOT + BE UTILIZED. YOU WILL HAVE') 0256 50 06400 0257 06425 WRITE (6, 60) -FORMAT (X, 06450 60 TO TRY AGAIN. ') 06475 0259 0260 06500 GO TO 10 06525 0261 06550 0262 06575 0263 С HERE THE DEFAULT PARAMETERS OF THE REACTOR CONTROL SYSTEM AND THE MODERATOR COEFFICIENT OF REACTIVITY ARE ESTABLISHED. CC 06600 0264 0265 06625 06650 0266 C 70 -1.0E-06 0267 AA = 06675 0268 ALPHM = -8.60E-06 06700 5.0 TAU = 06725 0269 TAUC 5.0 = 06750 0270 06775 0271 DN1 = 0.0 06800 0272 DN2 = 0.0 0273 DVO = 0.0 06825 0274 RIR = 0.0 06850 06875 0275 06900 0276 C HERE THE SIX GROUPS OF DELAYED PRECURSORS AND DECAY CONSTANTS AND THE DEFAULT VALUE OF THE DOPPLER COEFFICIENT OF REACTIVITY ARE INITIALIZED, DEPENDING ON WHICH ISOTOPE WAS CHOSEN EARLIER. 06925 0277 С CCC 06950 0278 06975 0279 07000 0280 2.2876E-04 07025 0281 IF (15 .EQ. 11 B(1) -07050 0282 IF (15 .EQ. B(2) = 7.9534E-04 1) 07075 IF (15 .EQ. 1) B(3) = 6.7032E-04 0283

(15 .EQ. (15 .EQ.

1)

1)

B(4)

B(5)

=

=

7.3948E-04

1.3566E-04

1 F

1F

07100

07125

0284

0285

1 1 **1** 1 1

(IS .EQ. 1) (IS .EQ. 1) 1 F 07150 0286 = -1.07E-05 IF ALPHE 07175 0287 (15 = 2.1450E-04 1 F .EQ. 2) B(1) 0288 07200 2) 1.4235E-03 IF = .EQ. B(2) 07225 0289 1.2740E-03 . I F (15 .EQ. B(3) = 0290 07250 (15 .EQ. 1 F 2) B(4) = 2.5675E-03 07275 0291 1 F 21 B(5) = 7.4750E-04 .EQ. 0292 07300 2) B(6) = 2.7300E-04 1 F (15 0293 .EQ. 07325 = -2.61E-05 2) ALPHE 0294 IF (15 .EQ. 07350 7.4200E-05 0295 IF (15 .EQ. 3) B(1) = 07375 .EQ. 3) = 6.3176E-04 IF (15 B(2) 0296 07400 B(3) = 4.4732E-04 IF .EQ. 07425 0297 (15 = 6.9112E-04 (15 B(4) 0298 IF .EQ. 3) 07450 1.8232E-04 1 F (15 .EQ. 3) B(5) = 07475 0299 (15 .EQ. 1 F 3) B(6) = 9.3280E-05 0300 07500 ALPHE (15 3) = -0.85E-051 F .EQ. 07525 0301 07550 0302 07575 0303 С HERE THE SUM TOTAL OF THE DELAYED PRECURSORS IS CALCULATED. THIS WILL BE NEEDED LATER ON TO CONVERT REACTIVITY FROM UNITS OF "CENTS" TO UNITS OF "((DK/K)/C)". 07600 C 0304 CC 0305 07625 07650 0306 07675 0307 C $D0 \ 80 \ I = 1.6$ 07700 0308 B(1) + A07725 0309 = CONTINUE 07750 0310 80 07775 0311 C 07800 0312 HERE THE USER DECIDES WHETHER THE OPTION OF USING FREE REAC-TOR KINETICS (THAT IS, NO FEEDBACK OR CONTROL SYSTEM) IS TO BE С 07825 0313 C 07850 0314 07875 0315 C USED. 07900 0316 C 90 WRITE (6, 100) 100 FORMAT (X, ' + THIS RUN? FRE 07925 0317 DO YOU WISH TO HAVE FREE KINETICS ON FREE KINETICS MEANS') 07950 0318 07975 0319 FORMAT (X 110) 0320 08000 THAT REACTIVITY COEFFICIENTS ARE EQUAL THERE WILL BE NO') 0321 110 08025 + TO ZERO. 0322 08050 WRITE (6, 120) FORMAT (X, 08075 0323 FEEDBACK AND NO CONTROL SYSTEM. NOTE: 08100 0324 120 THE PROMPT JUMP') 08125 0325 + (6, 130) WRITE 08150 0326 APPROXIMATION CAN BE SELECTED LATER ON FORMAT (X, ' APPRO. + ONLY IF THE FREE KINETICS, ') 08175 0327 130 08200 0328 (6, 140) 08225 0329 WRITE OPTION IS SELECTED NOW. IF YOU WANT FORMAT (X. 08250 0330 140 + FREE KINETICS, ') 08275 0331 (6, 150) WRITE 08300 0332 FORMAT (X, TYPE IN 1:, IF NOT, TYPE IN 2') 150 08325 0333 160, KF 08350 0334 READ FORMAT (11) 08375 0335 160 08400 0336 IF ((KF .EQ. 1) .OR. (KF .EQ. 2)) GO TO 200 08425 0337 08450 0338 08475 WRITE 0339 (6, 170) FORMAT (X, YOU HAVE TYPED IN A NUMBER THAT CANNOT YOU WILL HAVE') 08500 0340 170 + BE UTILIZED. 08525 0341 08550 WRITE (6, 180) 0342

152

=

B(6)

9.0440E-05

180 FORMAT (X, ' WRITE (6, 190) 190 FORMAT(') TO TRY AGAIN. ') GO TO 90 200 IF (KF .EQ. 1) GO TO 1590 WRITE (6, 210) FORMAT (X, WHAT LEVEL (IN CENTS) PRE-PERTURBATION + REACTIVITY IS DESIRED?') WRITE (6, 220) 220 FORMAT (X, ' + -5 CENTS.') USE FORMAT F5.1 EXAMPLE: -05.0 EQUALS READ 230, 230 FORMAT (F4.1) RHON IF ((RHON .GT. -100.0) .AND. (RHON .LT. 100.0)) GO TO 270 WRITE (6, 240) FORMAT (X, ' YOU HAVE SELECTED A VALUE THAT WILL + RESULT IN A PROMPT SUPERCRITICAL') WRITE (6, 250) 250 FORMAT (X, ' CONDITION. THIS IS NOT ALLOWED, AND YOU + WILL HAVE TO TRY AGAIN.') WRITE (6, 260) FORMAT ('') GO TO 200 С THIS EQUATION CONVERTS PRE-PERTURBATION REACTIVITY FROM "CENTS" TO "((DK/K)/C)". С C С RHO = 0.01 * RHON * A С C THIS SECTION EXPLAINS REACTIVITY COEFFICIENTS. C WRITE (6, 280) 280 FORMAT (X, ' + REACTIVITY IS') COEFFICIENT OF DOPPLER (6, 290) ALPHF WRITE FORMAT (X, ', E10.3, 2X, '(dK / K) / C') WRITE (6, 300) 300 FORMAT (X, MODERATOR TEMPERATURE COEFFICIENT OF + REACTIVITY IS', 2X, E10.3) WRITE (6, 310) ALPHM FORMAT (X, FORMAT (X, ' ', E10.3, 2X, '(dK / K) / C') IF (KF .EQ. 1) GO TO 920 WRITE (6, 320) 320 FORMAT (X, ' NO + ABOVE ARE TYPICAL ONES.') NOTE: REACTIVITY COEFFICIENTS AS GIVEN WRITE (6, 330) 330 FORMAT (X, ' ADDITI + NUMBERS, FEEDBACK WILL ALSO') WRITE (6, 340) ADDITIONALLY, SINCE THEY ARE NEGATIVE

340 FORMAT (X, ' + THE VALUES OF THESE') WRITE (6, 350) 350 FORMAT (X, ' BE NEGATIVE. UNLESS YOU WANT TO CHANGE FORMAT (X, COEFFICIENTS, THEY WILL KEEP THE VALUES + ALREADY STATED. THE DOPPLER') WRITE (6, 360) 360 FORMAT (X, ' COEFFICIE + -2.0E-05 TO 3.6E-05 FOR U-235.') COEFFICIENT TYPICALLY VARIES FROM WRITE (6, 370) 370 FORMAT (X, ' FOR OTHER FUELS IT IS SOMEWHAT LESS. + THE MODERATOR TEMPERATURE') WRITE (6, 390) FORMAT (X, ' COEFFICIENT, WHICH IN THIS CASE IS A + COMBINED TEMPERATURE AND') (6, 400) WRITE FORMAT (X, ' - PRE + FROM -3.2E-04 TO 1.7E-04') PRESSURE COEFFICIENT, TYPICALLY RANGES WRITE (6, 410) FORMAT (X, (dK / K) / C') WRITE (6, 420) 420 FORMAT ('') HERE THE USER SELECTS A VALUE FOR PRE-PERTURBATION REACTIVITY. (RHON) USUALLY IT WILL BE ZERO. HOWEVER, IT IS NOT ALLOWED TO BE EITHER LESS THAN -90.0 CENTS, OR GREATER THAN + 90.0 CENTS, AS C C C THIS IS CLOSE TO A PROMPT CRITICALITY CONDITION. C C 430 WRITE (6, 440) 440 FORMAT (X, ' IF YOU WISH TO INSERT YOUR OWN + REACTIVITY COEFFICIENTS, TYPE IN 1;') WRITE (6, 450) FORMAT (X, IF NOT, TYPE IN 2') 460, ALA READ FORMAT (11) IF (ALA .EQ. 2) GO TO 630 IF (ALA .EQ. 1) GO TO 490 C HERE THE USER CHOOSES WHETHER A CHANGE IN REACTIVITY COEFFI-С CIENTS IS DESIRED. IF NO CHANGE IS DESIRED, THE DEFAULT VALUES WILL REMAIN. IF CHANGE IS DESIRED, THE PROGRAM WILL ENABLE THE C WILL REMAIN. IF CHANGE IS DESIR USER TO SELECT DESIRED VALUE(S). C C C WRITE (6, 470) 470 FORMAT (X, ' YOU HAVE TYPED IN A NUMBER THAT CANNOT + BE UTILIZED. YOU WILL HAVE') WRITE (6, 480) 480 FORMAT (X, ' TO TRY AGAIN. ') GO TO 430 490 WRITE (6, 500) 500 FORMAT (X, ' + REACTIVITY, US WRITE (6, 510) 510 FORMAT (X, ' TYPE IN DESIRED DOPPLER COEFFICIENT OF USING FORMAT') E10.3: EX: A REACTIVITY OF -8.61E-05

+ WOULD BE WRITTEN AS') WRITE (6, 520) ALPHF 520 FORMAT (X, -0.861E-04: CURRENT VALUE IS', 2X, E10.3) C ALPHFS AND ALPHMS ARE HOLDING VARIABLES OF THE DEFAULT VALUES OF THE REACTIVITY COEFFICIENTS. IF THE USER FIRST SELECTS IM-C PERMISSIBLE VALUES FOR THE REACTIVITY, AND THEN, AFTER THE PROGRAM JUMPS BACKWARD TO CHALLENGE THE CHOICE, DECIDES NOT TO CHANGE THE THE VALUES AFTER ALL, THESE HOLDING VARIABLES PREVENTS THE DEFAULT VALUES FROM BEING LOST. C CC C C C ALPHE ALPHFS = 530, ALPHF READ 530 FORMAT (E10.3) IF ((ALPHF .GE. -0.001) .AND. (ALPHF .LE. 0.001)) GO TO 560 ALPHF = ALPHES WRITE (6, 540) FORMAT ('0', ' + THAT IS TOO LARGE TO BE') WRITE (6, 550) FORMAT (X, ' USE YOU CHOSE A REACTIVITY COEFFICIENT USED. YOU WILL HAVE TO SELECT ANOTHER.') GO TO 430 560 WRITE (6, 570) 570 FORMAT (X, ' + USING FORMAT E10.3') TYPE IN DESIRED TEMPERATURE COEFFICIENT, WRITE (6, 580) FORMAT (X, ' EX: A REACTIVITY OF 7.22E-06 WOULD BE + WRITTEN AS 00.722E-05') 1.4 ALPHM ALPHMS = WRITE (6, 590) ALPHM FORMAT (X, CURRENT VALUE IS', 2X, E10.3) 600, ALPHM READ FORMAT (E10.3) IF ((ALPHM .GE. -0.0001) .AND. (ALPHM .LE. 0.0001)) GO TO 630 ALPHM = ALPHMS WRITE (6, 610) 610 FORMAT (X, 'YOU + THAT IS TOO LARGE TO BE') WRITE (6, 620) 620 FORMAT (X, 'USE YOU HAVE CHOSEN A REACTIVITY COEFFICIENT USED. YOU WILL HAVE TO SELECT ANOTHER. ') GO TO 560 630 WRITE (6, 640) 640 FORMAT (X, ' DO YOU WISH TO UTILIZE A CONTROL

	05.14		+ SYSTEM IN THE REACTOR, OR')
12850	0514 0515		
12875		650	FORMAT (X. NOT? IF YOU WANT A CONTROL SYSTEM, TYPE
12900	0516	0,0	+ IN 1: IF NOT, TYPE IN 2')
12925	0517		READ 660, CS
12950	0518	660	
12975	0519	660	FORMAT (11)
13000	0520		15 (02 50 0) CO TO 1500
13025	0521		IF (CS . EQ. 2) GO TO 1590
13050	0522		IF (CS .EQ. 1) GO TO 700
13075	0523		
13100	0524		WRITE (6, 670) FORMAT (X, ' YOU HAVE TYPED IN A NUMBER THAT CANNOT + BE UTILIZED. YOU WILL HAVE')
13125	0525	670	FORMAT (X, YOU HAVE TYPED IN A NUMBER THAT CANNOT
13150	0526		+ BE UTILIZED. YOU WILL HAVE)
13175	0527		WRITE (6, 680)
13200	0528	680	FORMAT (X, ' TO TRY AGAIN.')
13225	0529		WRITE (6, 680) FORMAT (X, ' TO TRY AGAIN.') WRITE (6, 690) FORMAT ('')
13250	0530	690	FORMAT ('')
13275	0531		
13300	0532		GO TO 630
13325	0533		
13350	0534	С	
13375	0535	C	HERE THE USER DECIDES IF A CONTROL SYSTEM IS DESIRED.
13400	0536	С	
13425	0537	700	WRITE (6, 710) FORMAT (X, ' IN THE CONTROL SYSTEM MODELED HERE, + PROPORTIONAL CONTROL AND')
13450	0538	710	FORMAT (X, ' IN THE CONTROL SYSTEM MODELED HERE,
13475	0539		+ PROPORTIONAL CONTROL AND')
13500	0540		WRITE (6, 720)
13525	0541	720	FORMAT (X, ' INTEGRAL CONTROL ARE USED. WHEN THE
13550	0542		WRITE (6, 720) FORMAT (X, ' INTEGRAL CONTROL ARE USED. WHEN THE + CONTROLLER "SENSES" A CHANGE')
13575	0543		WRITE (6, 730) FORMAT (X, ' IN THE AVERAGE COOLANT TEMPERATURE OF + REACTOR, IT INSERTS A')
13600	0544	730	FORMAT (X, ' IN THE AVERAGE COOLANT TEMPERATURE OF
13625	0545		+ REACTOR, IT INSERTS A')
13650	0546		WRITE (6, 740) FORMAT (X, REACTVITY STEP TO COUNTERACT IT.')
13675	0547	740	FORMAT (X, ' REACTVITY STEP TO COUNTERACT IT.')
13700	0548		
13725	0549		WRITE (6, 750) FORMAT ('0', ' THERE ARE THREE PARAMETERS WHICH
13750	0550	750	FORMAT ('0', ' THERE ARE THREE PARAMETERS WHICH
13775	0551		+ TOGETHER DETERMINE THE RESPONSE)
13800	0552		WRITE (6 760)
13825	0553	760	FORMAT (X, ' CHARACTERISTICS OF THE CONTROL SYSTEM: + THE GAIN, THE TIME CONSTANT')
13850	0554		+ THE GAIN, THE TIME CONSTANT')
13875	0555		
13900	0556	770	FORMAT (X, OF THE FIRST-ORDER DIFFERENTIAL EQUATION
13925	0557		+ WHICH DESCRIBES THE')
13950	0558		WRITE (6, 780)
13975	0559	780	
14000	0560		+ AND A CONSTANT TAU USED TO')
14025	0561		WRITE (6, 790) FORMAT (X. GOVERN THE ACTIONS OF THE INTEGRAL
14050	0562	790	FORMAT (X. GOVERN THE ACTIONS OF THE INTEGRAL
14075	0563 .		+ CONTROLLER. THE GAIN HAS UNITS)
14100	0564		WRITE (6, 800) FORMAT (X ' OF REACTIVITY / (DEG. C - SEC), AND
14125	0565	800	
14150	0566		+ CONTROLS BOTH THE PROPORTIONAL')
14175	0567	CONTRACTOR	WRITE (6, 810)
14200	0568	810	FORMAT (X, ' CONTROLLER AND THE INTEGRAL CONTROLLER + TOGETHER., INCREASING THE')
14225	0569		+ TOGETHER INCREASING THE')
14250	0570		WRITE (6, 820)

14275	0571	820 FORMAT (X. ' VALUE OF THE GAIN CAUSES A DIRECTLY
14300	0572	+ PROPORTIONAL CHANGE IN THE')
14325	0573	WRITE (6 830)
14350	0574	830 FORMAT (X, ' MAGNITUDE OF REACTIVITY, FOR A GIVEN + ERROR, RESPONSE SPEED OF THE')
14375	0575	+ FREOR RESPONSE SPEED OF THE')
14400	0576	WRITE (6, 840)
14425	0577	WRITE (6, 840) 840 FORMAT (X, CONTROL SYSTEM IS INCREASED BY DECREASING
	0578	+ THE TIME CONSTANT OF THE')
14450	0579	WRITE (6 850)
14475	0580	WRITE (6, 850) 850 FORMAT (X, ' DIFFERENTIAL EQUATION, AND VICE VERSA. + THE CONSTANT TAU ADJUSTS')
14500	0581	+ THE CONSTANT TAU ADJUSTS')
14525	0581	
14550	0582	WRITE (6, 860) 860 FORMAT (X, ' THE EFFECT OF THE INTEGRAL PORTION OF + THE CONTROLLER. INCREASING')
	0583	A THE CONTROLLER INCREASING!)
	0584	THE CONTROLLER. TROCEASTING /
	0585	WRITE (6, 870) 870 FORMAT (X, ' TAU WILL DECREASE THE EFFECT OF THE + INTEGRAL CONTROLLER, AND VICE')
14650	0586	870 FORMAT (X, ' TAU WILL DECREASE THE EFFECT OF THE
	0587	+ INTEGRAL CONTROLLER, AND VICE)
14700	0588	WRITE (6, 880) 880 FORMAT (X, 'VERSA.')
14725	0589	880 FORMAT (X, 'VERSA.')
14750	0590	
14775	0591	WRITE (6, 890) 890 FORMAT ('0', 'AS OPERATOR, YOU WILL BE ABLE TO ADJUST + THE ACTIONS OF THE')
14800	0592	890 FORMAT ('O', ' AS OPERATOR, YOU WILL BE ABLE TO ADJUST
14825	0593	+ THE ACTIONS OF THE')
14850	0594	WRITE (6, 900) 900 FORMAT (X, ' REACTOR CONTROL SYSTEM BY SELECTING YOUR
14875	0595	900 FORMAT (X, ' REACTOR CONTROL SYSTEM BY SELECTING YOUR
14900	0596	+ OWN VALUES FOR THE THREE')
14925	0597	WRITE (6, 910)
	0598	WRITE (6, 910) 910 FORMAT (X, ' PARAMETERS LISTED ABOVE.')
14975		
	0600	920 WRITE (6, 930) 930 FORMAT ('0', ' CURRENT VALUE OF THE GAIN IS + -1.0E-06; ITS VALUE TYPICALLY') WRITE (6, 940) 940 FORMAT (X, ' VARIES FROM + 0.00 TO -06')
15025	0601	930 FORMAT ('O'. CURRENT VALUE OF THE GAIN IS
15050	0602	+ -1.0E-06: ITS VALUE TYPICALLY')
	0603	WRITE (6, 940)
	0604	940 FORMAT (X. ' VARIES FROM
	0605	940 FORMAT (X, ' + 0.0 TO -4.0E-06') WRITE (6, 950) 950 FORMAT (X, ' CURRENT VALUE OF THE TIME CONSTANT IS
15150	0606	WRITE (6, 950)
	0607	WRITE (6, 950) 950 FORMAT (X, ' CURRENT VALUE OF THE TIME CONSTANT IS + 5 SEC.; ITS VALUE TYPICALLY') WRITE (6, 960) 960 FORMAT (X, ' VARIES FROM
	0608	+ 5 SEC . ITS VALUE TYPICALLY)
	0609	
	0610	WRITE (6, 960) 960 FORMAT (X. VARIES FROM
	0611	+ 2 SEC TO 20 SEC 1)
	0617	
	0612	WRITE (6, 960) 960 FORMAT (X. 'VARIES FROM + 2 SEC. TO 20 SEC.') WRITE (6, 970) 970 FORMAT (X. 'CURRENT VALUE OF THE PARAMETER TAU IS + 5 SEC.; ITS VALUE TYPICALLY') WRITE (6, 980) 980 FORMAT (X. 'VARIES FROM
	0613	970 FORMAT (A, ITS VALUE TYDICALLY)
	0614	+ 5 SEC.; ITS VALUE (TPTCALLET)
	0615	WRITE (6, 980) 980 FORMAT (X, VARIES FROM
		980 FORMAT (X, and account of the second of
	0617	+ 2 SEC. 10 20 SEC.)
15450	0618	WRITE (6, 980) 980 FORMAT (X, ' VARIES FROM + 2 SEC. TO 20 SEC.') IF (KF.EQ. 1) GO TO 1590
15475	0619	
15500	0620	C C HERE THE USER DECIDES IF ANY CHANGES TO ANY OF THE CONTROL C SYSTEM PARAMETERS ARE TO BE MADE. IF NO CHANGES ARE MADE, DEFAULT C VALUES WILL REMAIN. THE USER WILL BE ABLE TO CHANGE ANY OR ALL OF
15525	0621	C HERE THE USER DECIDES IF ANY CHANGES TO ANY OF THE CONTROL
	0622	C SYSTEM PARAMETERS ARE TO BE MADE. IF NO CHANGES ARE MADE, DEFAULT
	0623	C VALUES WILL REMAIN. THE USER WILL BE ABLE TO CHANGE ANY OR ALL OF
	0624	C THE PARAMETERS.
	0625	c
	0626	WRITE (6, 990) 990 FORMAT ('0', ' THE VALUES GIVEN ABOVE WILL REMAIN AS
15675	0627	990 FORMAT ('0', ' THE VALUES GIVEN ABOVE WILL REMAIN AS

15700	0628	+ THEY ARE UNLESS YOU')
15725	0629	WRITE (6, 1000) 1000 FORMAT (X, 'CHANGE THEM.') 1010 WRITE (6, 1020) 1020 FORMAT (X, 'DO YOU WISH TO CHANGE ANY OR ALL OF THE
15750 15775	0630	1010 WRITE (6, 1020)
15800	0632	1020 FORMAT (X, DO YOU WISH TO CHANGE ANY OR ALL OF THE
15825	0633	
15850	0634	WRITE (6, 1030) THE CONTROL SYSTEM? IF SO, TYPE IN 1:
15875	0635 0636	WRITE (6, 1030) 1030 FORMAT (X, ' THE CONTROL SYSTEM? IF SO, TYPE IN 1; + IF NOT, TYPE IN 2')
15900 15925	0637	WRITE (6, 1040)
15950	0638	1040 FORMAT (X, ' IF NOT, TYPE IN 2')
15975	0639	READ 1050, CSC
16000	0640 0641	1050 FORMAT (11)
16025 16050	0642	IF (CSC .EQ. 2) GO TO 1590
16075	0643	IF (CSC .EQ. 1) GO TO 1290
16100	0644	
16125	0645	WRITE (6, 1060) 1060 FORMAT (X, YOU HAVE TYPED IN A NUMBER THAT CANNOT
16150	0646 0647	
16200	0648	WRITE (6, 1070)
16225	0649	WRITE (6, 1070) 1070 FORMAT (X, ' TO TRY AGAIN.') WRITE (6, 1080)
16250	0650	WRITE (6, 1080) 1080 FORMAT ('')
16275	0651 0652	1080 FORMAT ()
16325	0653	GO TO 1010
16350	0654	
16375	0655	1090 WRITE (6, 1100) 1100 FORMAT (X, 'DO YOU WISH TO INSERT YOUR OWN VALUE FOR + THE GAIN?') WRITE (6 1110)
16400	0656	THE CALLS?
16425	0657 0658	WRITE (6, 1110)
16475	0659	1110 FORMAT (X. ' CURRENT VALUE IS -1.0E-06')
16500	0660	WRITE (6, 1120)
16525	0661	WRITE (6, 1120) 1120 FORMAT (X, ' IF SO, TYPE IN 1; IF NOT, TYPE IN 2') READ 1130, CSCG
16550 16575	0662	1130 FORMAT (11)
16600	0664	
16625	0665	IF (CSCG .EQ. 2) GO TO 1260
16650	0666	IF (CSCG .EQ. 1) GO TO 1170
16675	0667 0668	WRITE (6 1140)
16725	0669	WRITE (6, 1140) 1140 FORMAT (X, YOU HAVE TYPED IN A NUMBER THAT CANNOT
16750	0670	+ BE UTILIZED. YOU WILL HAVE')
16775	0671	WRITE (6, 1150)
16800 16825	0672 0673	1150 FORMAT (X, ' TO TRY AGAIN.') WRITE (6, 1160) 1160 FORMAT ('')
16850	0674	1160 FORMAT (',')
16875	0675	
16900	0676	GO TO 1090
16925	0677 0678	1170 WRITE (6, 1180)
16975	0679	1180 FORMAT (X, WRITE IN YOUR OWN VALUE FOR THE GAIN,
17000	0680	+ USING FORMAT E8.1')
17025	0681	WRITE (6, 1190)
17050	0682	1190 FORMAT (X, ' EX: A GAIN OF -0.0004 PER DEG. C - SEC + WOULD BE WRITTEN AS -4.0E-04')
17100	0684	WRITE (6, 1200)

1200 FORMAT (X. ' NOTE: THE GAIN IS ALWAYS A NEGATIVE + NUMBER, AND NEVER SMALLER THAN') WRITE (6, 1210) 1210 FORMAT (X, ' 0.0: CUR 0.0: CURRENT VALUE IS -1.0E-06') 1220, AA READ 1220 FORMAT (E8.1) IF ((AA .LE. 0.0) .AND. (AA .GE. -4.0E-06)) GO TO 1260 C THIS EQUATION "SAVES" THE DEFAULT VALUE OF THE GAIN IN CASE С THE USER CHANGES HIS OR HER MIND AND DECIDES NOT TO CHANGE T С THE OTHER CONTROL SYSTEM PARAMETERS CAN ALSO BE VALUE AFTER ALL. THE OT "SAVED" IN THE SAME WAY. C C C -5.0E-04 AA = WRITE (6, 1230) 1230 FORMAT (X, 1 YOU HAVE CHOSEN A VALUE THAT IS OUTSIDE + THE PERMISSIBLE LIMITS. ') WRITE (6, 1240) 1240 FORMAT (X, 'SELECT AGAIN, REMEMBERING THAT THE VALUE + SELECTED MUST LIE BETWEEN') WRITE (6, 1250) 1250 FORMAT (X, ' + -5.0E-04') 0.0 AND -2.0E-07: CURRENT VALUE IS GO TO 1090 1260 WRITE' (6, 1270) 1270 FORMAT (X, ' + THE TIME CONSTANT?') WRITE (6, 1280) DO YOU WISH TO INSERT YOUR OWN VALUE FOR (6, 1280) CURRENT VALUE IS 5.0') 1280 FORMAT (X, (6, 1290) WRITE 1290 FORMAT (X, IF SO. TYPE IN 1; IF NOT, TYPE IN 2') 1300, CSCTC READ 1300 FORMAT (11) IF (CSCTC .EQ. 2) GO TO 1430 IF (CSCTC .EQ. 1) GO TO 1340 WRITE (6, 1310)1310 FORMAT (X, ' YOU HAVE TYPED IN A NUMBER THAT CANNOT + BE UTILIZED. YOU WILL HAVE') WRITE (6, 1320) 1320 FORMAT (X, WRITE (6, 1330) 1330 FORMAT ('') TO TRY AGAIN. ') GO TO 1260 1340 WRITE (6, 1350) 1350 FORMAT (X, 'WRITE IN YOUR OWN VALUE FOR THE TIME + CONSTANT, USING FORMAT F3.1') WRITE (6, 1360) 1360 FORMAT (X, ' EX: A VALUE OF 4 SECONDS WOULD BE + WRITTEN AS 4.0')

WRITE 1370 FORMAT (X, ' CURRENT VALUE IS 5.0') 1380 FORMAT (F3.1) IF ((TAUC .GE. 2.0) .AND. (TAUC .LE. 20.0)) GO TO 1430 5.0 TAUC = WRITE (6, 1390) 1390 FORMAT (X, ' FORMAT (X, 'YOU HAVE CHOSEN A VALUE THAT IS OUTSIDE + THE PERMISSIBLE LIMITS.') WRITE (6, 1400) 1400 FORMAT (X, SELECT AGAIN, REMEMBERING THAT THE VALUE + SELECTED MUST LIE BETWEEN') WRITE (6, 1410) 1410 FORMAT (X, ' WRITE (6, 1420) 1420 FORMAT ('') 2.0 AND 20.0: CURRENT VALUE IS 5.0') GO TO 1260 1430 WRITE (6, 1440) 1440 FORMAT (X, ' DO YOU WISH TO INSERT YOUR OWN VALUE FOR + THE PARAMETER TAU? ') WRITE (6, 1450) 1450 FORMAT (X, ' WRITE (6, 1460) 1460 FORMAT (X, ' READ 5.0') CURRENT VALUE IS IF SO. TYPE IN 1: IF NOT, TYPE IN 2') 1470, CSCT 1470 FORMAT (11) IF (CSCT .EQ. 2) GO TO 1590 IF (CSCT .EQ. 1) GO TO 1510 WRITE (6, 1480) 1480 FORMAT (X, ' YOU HAVE TYPED IN A NUMBER THAT CANNOT + BE UTILIZED. YOU WILL POU HA WRITE (6, 1490) 1490 FORMAT (X, ' WRITE (6, 1500) 1500 FORMAT ('') TO TRY AGAIN. ') GO TO 1430 1510 WRITE (6, 1520) 1520 FORMAT (X, 'WRITE IN YOU + PARAMETER TAU, USING FORMAT F3.1') WRITE IN YOUR OWN VALUE FOR THE 1530 FORMAT (X, 1 PFAD 1540, TAU WRITE (6, 1530) CURRENT VALUE IS 5.0') 1540 FORMAT (F3.1) IF ((TAU .GE. 2.0) .AND. (TAU .LE. 20.0)) GO TO 1590 TAU 5.0 -

WRITE (6, 1550) 1550 FORMAT (X. FORMAT (X, 'YOU HAVE CHOSEN A VALUE THAT IS OUTSIDE + THE PERMISSIBLE LIMITS.') WRITE (6, 1560) SELECT AGAIN, REMEMBERING THAT THE VALUE FORMAT (X, ' SELE + SELECTED MUST LIE BETWEEN') 1560 FORMAT WRITE (6, 1570) 1570 FORMAT (X, 2.0 AND 20.0: CURRENT VALUE IS 5.0') WRITE (6, 1580) 1580 FORMAT ('') GO TO 1430 HERE, THE TWO-TIME-SCALE DECOUPLING ALGORITHM. THE PROMPT-JUMP APPROXIMATION, AND THE RAMP-INPUT MODEL ARE ALL EXPLAINED. THE USER IS THEN GIVEN THE OPTION OF CHOOSING WHETHER THE DECOUPLING С C ALGORITHM IS DESIRED. С C 1590 WRITE (6, 1600) 1600 FORMAT (X, ' BY DEFAULT. THE REACTOR IS CURRENTLY + USING A STEP INPUT MODEL THAT') (6, 1610) WRITE 1610 FORMAT (X, ' SOLV + (WITHOUT EXTERNAL SOURCE)') SOLVES THE POINT KINETICS EQUATIONS WRITE (6, 1620) 1620 FORMAT (X, ' FORMAT (X, ' DIRECTLY. HOWEVER, IF YOU WISH YOU + CAN USE EITHER THE PROMPT') WRITE (6, 1630) THE PROMPT JUMP') 1630 FORMAT (X, + MODEL. + DELAYED NEUTRON GROUPS.') WRITE (6, 1650) WRITE (6, 1640) 1640 FORMAT (X, WRITE (6, 1650) 1650 FORMAT (X, ' IF YOU CHOOSE THE RAMP-INPUT MODEL, YOU + WILL BE ABLE TO CHOOSE THE') WRITE (6, 1660) 1660 FORMAT (X, ' FORMAT (X, ' RAMP-INPUT RATE AND THE PERIOD OF TIME + OVER WHICH IT IS OPERATIVE.') WRITE (6, 1670) 1670 FORMAT ('0', ' THIS PROGRAM ALSO HAS THE CAPABILITY OF + DECOUPLING THE 7X7 SYSTEM') WRITE (6, 1680) 1680 FORMAT (X, ' OF POINT-KINETICS EQUATIONS (6 DELAYED -+ NEUTRON GROUPS PLUS PROMPT') + GROUP CONSISTING OF THE 6') 1690 FORMAT (X. (6, 1700) WRITE DELAYED-NEUTRON GROUPS, AND THE FAST -1700 FORMAT 1X + MODE GROUP CONSISTING OF THE') WRITE (6, 1710) 1710 FORMAT (X, PROMPT RESPONSE. THE POINT-KINETICS + EQUATIONS CAN THEN BE SOLVED') WRITE (6, 1720) 1720 FORMAT (X, SEPARATELY FOR EACH OF THE TWO GROUPS.

+ SHORT TIME STEPS WOULD BE') WRITE (6, 1730) 1730 FORMAT (X, FORMAT (X, USED FOR THE FAST MODE, WHILE LONGER + TIME STEPS WOULD BE USED FOR') WRITE (6, 1740) FORMAT (X, ' THE SLOW MODE. THIS WILL ACHIEVE INCREASED ACCURACY AND DECREASED') 1740 FORMAT (X, + WRITE (6, 1750) 1750 FORMAT (X,' CPU TIME. + MATRIX DECOUPLING OPTION, YOU') NOTE: IF YOU SELECT THIS CPU TIME. WRITE (6, 1760) 1760 FORMAT (X, ' FORMAT (X, ' WILL NOT BE ABLE TO USE THE PROMPT JUMP APPROXIMATION. THIS PROGRAM') WRITE (6, 1780) 1780 FORMAT (X, ' WILL PREVENT YOU FROM EVEN TRYING TO DO + SO.') 1800 WRITE (6, 1810) 1810 FORMAT ('0', ' DO YOU WANT TO USE THE "MATRIX DECOUPLING" OPTION? IF SO, ') (6, 1820) WRITE TYPE IN 1; IF NOT, TYPE IN 2') 1820 FORMAT (X, 1830, EIG READ 1830 FORMAT (11) C HERE, IF A CONTROL SYSTEM IS NOT DESIRED, GAIN IS SET EQUAL TO С ZERO, PREVENTING ANY FEEDBACK DUE TO A CONTROL SYSTEM. IF THE CCC COUPLING OPTION IS DESIRED, THE PROMPT-JUMP APPROXIMATION IS NOT ALLOWED. C IF (CS .EQ. 2) IF (EIG .EQ. 2) AA = 0 0GO TO 1870 IF (EIG .EQ. 1) IF (EIG .EQ. 1) PJ ----GO TO 1980 WRITE (6, 1840) 1840 FORMAT (X, ' + SELECT THE "MATRIX') WHEN YOU WERE ASKED IF YOU WANTED TO 22375 (6, 1850) WRITE 1850 FORMAT (X. DECOUPLING" OPTION, YOU TYPED IN A + NUMBER THAT CANNOT BE UTILIZED. ') WRITE (6, 1860) 1860 FORMAT (X, ' YOU WILL HAVE TO TRY AGAIN. ') GO TO 1800 С ASSUMING EARLIER DECISIONS DO NOT PRECLUDE THIS, THE USER DOES С NOW HAVE THE OPTION OF SELECTING THE PROMPT-JUMP APPROXIMATION. С C 1870 WRITE DO YOU WISH TO UTILIZE THE PROMPT JUMP IF SO, TYPE') (6, 1880) 1880 FORMAT (X, + APPROXIMATION? WRITE (6, 1890) 1890 FORMAT (X, ' IN 1; IF NOT, TYPE IN 2') WRITE (6, 1900)

1900 FORMAT ('0', ' YO + MODEL AND THE PROMPT JUMP') YOU CAN SELECT BOTH THE RAMP-INPUT WRITE (6, 1910) 1910 FORMAT (X, APPROXIMATION. BUT IF YOU DO, THE + PROMPT JUMP MODEL WILL NOT') WRITE (6, 1920) 1920 FORMAT (X, OPERATE UNTIL AFTER THE RAMP-INPUT IF YOU SELECT THE') + IS COMPLETE. WRITE (6, 1930) 1930 FORMAT (X, ' PJ APPROXIMATION, THERE WILL BE NO + FEEDBACK AND NO CONTROL SYSTEM.') 1940, PJ RFAD 1940 FORMAT (11) C HERE, IF THE PROMPT-JUMP APPROXIMATION HAS BEEN SELECTED, THE RAMP-INPUT MODEL WILL AUTOMATICALLY NOT BE ALLOWED, AND NERO WILL С CC JUMP BEYOND IT. C IF ((PJ .EQ. 1) .OR. (PJ .EQ. 2)) GO TO 1980 WRITE (6, 1950) 1950 FORMAT (X, ' YOU HAVE TYPED IN A NUMBER THAT CANNOT YOU WILL HAVE') + BE UTILIZED. WRITE (6, 1960) 1960 FORMAT (X, WRITE (6, 1970) 1970 FORMAT ('') TO TRY AGAIN. ') GO TO 1870 C HERE, THE USER HAS THE CHOICE OF SELECTING, OR NOT SE THE RAMP-INPUT MODEL (ASSUMING THAT EARLIER DECISIONS DO NOT-C C С CLUDE THIS). C 1980 WRITE (6, 1990) 1990 FORMAT (X. ' DO YI + MODEL? IF SO, TYPE IN 1;') DO YOU WISH TO SELECT THE RAMP-INPUT 2000 FORMAT (X, ' PFAD 2010, RI IF NOT, TYPE IN 2') 2010 FORMAT (11) IF ((RI .EQ. 1) .OR. (RI .EQ. 2)) GO TO 2050 WRITE (6, 2020) 2020 FORMAT (X, ' YOU HAVE TYPED IN A NUMBER THAT CANNOT + BE UTILIZED. YOU WILL HAVE') WRITE (6, 2030) 2030 FORMAT (X, ' WRITE (6, 2040) 2040 FORMAT ('') TO TRY AGAIN. ') GO TO 1980

2050 IF (RI .EQ. 2) GO TO 2360 C HERE, THE RAMP-INPUT MODEL IS EXPLAINED. IN PARTICULAR, THE USER WILL BE PREVENTED FROM ALLOWING A GIVEN RAMP-INPUT RATE FROM C С RUNNING SO LONG THAT IT WILL RESULT IN A PROMPT CRITICALITY CON-DITION. THE RAMP-INPUT RATE MAY NOT EXCEED PLUS OR MINUS 10 CENTS С C PER SECOND, AND TOTAL ACCUMULATED REACTIVITY MAY NOT EXCEED 90 C č CENTS. C WRITE (6, 2060) 2060 FORMAT (X, ' SINCE YOU HAVE CHOSEN THE RAMP - INPUT YOU WILL NOW HAVE TO') + MODEL, YOU WILL WRITE (6, 2070) 2070 FORMAT (X, ' SELECT A RAMP - INPUT RATE AND A PERIOD + OF TIME DURING WHICH THIS') WRITE (6, 2080) 2080 FORMAT (X, ' RAMP + THE RAMP - INPUT RATE MAY') RAMP - INPUT RATE IS IN EFFECT. NOTE: (6, 2090) WRITE 2090 FORMAT (X. NOT EXCEED PLUS OR MINUS 0.1 \$/SEC. TOTAL ACCUMULATED REACTIVITY') WRITE (6, 2100) 2100 FORMAT (X, ' FORMAT (X, ' MAY NOT EXCEED 0.95. IF YOU SELECT + VALUES OUTSIDE THESE PARAMETERS, ') WRITE (6, 2110) 2110 FORMAT (X, YOUR CHOICE(S) WILL BE REJECTED, AND YOU + WILL HAVE TO TRY AGAIN.) WRITE (6, 2120) 2120 FORMAT ('0', EXAMP + INPUT RATE OF +10 CENTS/SEC.') EXAMPLE: SUPPOSE YOU SELECT A RAMP -WRITE (6, 2130) 2130 FORMAT (X THIS IS WITHIN PERMISSIBLE LIMITS. THEN + YOU SELECT A TIME PERIOD') WRITE (6, 2140) 2140 FORMAT (X, 1 OF 11 SECONDS. TEN CENTS OF REACTIVITY + PER SECOND FOR 11 SECONDS') WRITE (6, 2150) 2150 FORMAT (X, ' WOULD RESU + REACTIVITY OF 110 CENTS. THIS') (6, 2150) WOULD RESULT IN A TOTAL ACCUMULATED (6, 2150) WRITE REPRESENTS A PROMPT SUPERCRITICALITY 2160 FORMAT (X. + CONDITION, IT VIOLATES THE') WRITE (6, 2170) 2170 FORMAT (X, CONDITION THAT TOTAL ACCUMULATED + REACTIVITY MAY NOT EXCEED PLUS OR') WRITE (6, 2180) 2180 FORMAT (X, MINUS 90 CENTS, AND IT WILL BE REJECTED. YOU WILL THEN HAVE TO TRY') WRITE (6, 2190) 2190 FORMAT (X, AGAI + MULTIPLY THE RAMP - INPUT') AGAIN. WHEN YOU PICK YOUR OWN VALUES, WRITE (6, 2200) 2200 FORMAT (X, RATE (IN CENTS) BY THE TIME + (IN SECONDS). THE PRODUCT MAY NOT WRITE (6, 2210)

EXCEED PLUS OR MINUS 90. ') 2210 FORMAT (X, ' 2220 WRITE (6, 2230) 2230 FORMAT ('0', ' FORMAT ('O', 'WRITE IN A RAMP - INPUT RATE + (IN CENTS/SEC), USING FORMAT F6.2:') (6, 2240) WRITE 2240 FORMAT (X, A RAMP - INPUT RATE OF -10 CENTS/SEC EX: + WOULD BE WRITTEN AS -10.00') WRITE (6, 2250) 2250 FORMAT (X, ' A RAM + WOULD BE WRITTEN AS 005.00') 5 CENTS/SEC A RAMP - INPUT RATE OF READ 2260, RIR 2260 FORMAT (F5.1) IF ((RIR .GE. -10.0) .AND. (RIR .LE. 10.0)) GO TO 2290 WRITE (6, 2270) 2270 FORMAT (X, ' + OR MINUS 10. Y THE VALUE SELECTED MAY NOT EXCED PLUS YOU WILL HAVE') WRITE (6, 2280) 2280 FORMAT (X, ' TO TRY AGAIN. ') GO TO 2220 FURMAT (X, ' WRITE IN THE TIME PERIOD FOR WHICH THE + RAMP - INPUT IS IN EFFECT, ') WRITE (6, 2310) FORMAT (X, ' 2290 WRITE (6, 2300) 2300 FORMAT (X, ' 2310 FORMAT (X, ' READ 2320, TTOT 2320 FORMAT (F5.1) RIR * TTOT PROD -0.01 * RIR * A RIR = IF ((PROD .GE. -90.0) .AND. (PROD .LE. 90.0)) GO TO 2450 WRITE (6, 2330) YOU HAVE SELECTED VALUE(S) THAT ARE TOO 2330 FORMAT (X. REMEMBER, THE PRODUCT') + HIGH. WRITE (6, 2340) OF RAMP - INPUT (IN CENTS) TIMES TOTAL 2340 FORMAT (X, + TIME PERIOD (IN SECONDS)') WRITE (6, 2350) 2350 FORMAT (X, ' MUS + WILL HAVE TO TRY AGAIN.') MUST NOT EXCEED PLUS OR MINUS 90.0. YOU GO TO 2220 RIR 0.01 # RIR # A = C HERE THE USER SELECTS WHATEVER REACTIVITY STEP IS REQUIRED. C C WRITE (6, 2370) 2370 FORMAT (X, WHAT LEVEL (IN CENTS) REACTIVITY

+ PERTURBATION IS DESIRED?') WRITE (6, 2380) 2380 FORMAT (X, ' + INPUT OF +10 CENTS.') USE FORMAT F5.1 EX: 010.0 = A STEP 2390, DRON READ 2390 FORMAT (F4.1) IF (((DRON + RHON) .GT. -100.0) .AND. ((DRON + RHON) .LT.100.0)) GO TO 2440 2400 WRITE (6, 2410) 2410 FORMAT (X, ' YOU HAVE SELECTED A VALUE THAT WILL + RESULT IN A PROMPT SUPERCRITICAL') WRITE (6, 2420) 2420 FORMAT (X, ' CONDITION. THIS IS NOT ALLOWED, AND YOU + WILL HAVE TO TRY AGAIN.') WRITE (6, 2430) 2430 FORMAT ('') GO TO 2360 0.01 # DRON # A DRO = 27675 27700 С HERE INITIAL POWER LEVEL IS SELECTED. C C 2450 WRITE (6, 2460) 2460 FORMAT (X, 'WHAT + DESIRED? USE FORMAT F6.1') WRITE (6, 2470) 2470 FORMAT (X, 'EXAMI + TYPE IN 2000.0') READ 2480 N10 WHAT INITIAL POWER LEVEL (IN MWT) IS EXAMPLE: IF INITIAL POWER IS 2000 MW, 2480, N10 READ 2480 FORMAT (F6.1) IF ((N10 .GT. 0.0) .AND. (N10 .LE. 3000.0)) GO TO 2520 (6, 2490) WRITE 2490 FORMAT (X. NEGATIVE POWER LEVELS OR POWER LEVELS + IN EXCESS OF 3000MW ARE NOT') WRITE (6, 2500) 2500 FORMAT (X, ALLOWED. YOU WILL HAVE TO TRY AGAIN. ') WRITE (6, 2510) 2510 FORMAT ('') GO TO 2450 2520 IF ((KF .EQ. 1) .OR. + (PJ .EQ. 1) .OR. (RI .EQ. 1) .OR. (EIG .EQ. 1)) GO TO 2720 C HERE THE USER DECIDES ON WHETHER TO SELECT A POWER STEP. THIS WILL MEAN NO REACTOR KINETICS, BUT A CONSTANT POWER AT SOME NEW CCC LEVEL. THIS IS TO CHECK ON STEAM GENERATOR PERFORMANCE. C WRITE (6, 2530)

2530 FORMAT (X, ' DO YOU WISH TO INSERT A FIXED POWER + CHANGE STEP? THIS IS A STEP') WRITE (6, 2540) CHANGE IN REACTOR POWER IMPOSED BY YOU 2540 FORMAT FORMAT (X, ' + AFTER THE INITIAL,') WRITE (6, 2550) STEADY-STATE CONDITIONS HAVE BEEN SET 2550 FORMAT (X, IT REPLACES THE REACTOR') + UP. (6, 2560) 2560 FORMAT (X, TOPTION, THERE WILL BE NO') WRITE KINETICS SUBROUTINE. IF YOU CHOOSE THIS (6, 2570) WRITE FORMAT (X, TREACTOR KINETICS. TOTAL POWER LEVEL + WILL BE PERMANENTLY FIXED.') 2570 FORMAT (X, (6, 2580) WRITE 2580 FORMAT (X NATURALLY, TOTAL REACTOR POWER WILL NOT + BE ALLOWED TO BE GREATER') WRITE (6, 2590) 2590 FORMAT (X, ' FORMAT (X, ' THAN 3000MW OR LESS THAN ZERO. IF YOU + WISH THIS OPTION, TYPE IN 1;') WRITE (6, 2600) IF NOT, TYPE IN 2') 2600 FORMAT (X. READ 2610, NK 2610 FORMAT (11) IF ((NK .EQ. 1) .OR. (NK .EQ. 2)) GO TO 2650 WRITE (6, 2620) YOU HAVE TYPED IN A NUMBER THAT CANNOT 2620 FORMAT (X, + BE UTILIZED. YOU WILL HAVE') WRITE (6, 2630) 2630 FORMAT (X, TO TRY AGAIN. ') (6, 2 2640) WRITE 2640 FORMAT (GO TO 2520 2650 IF (NK .EQ. 2) GO TO 2710 WRITE (6, 2660) 2660 FORMAT (X, ' + FORMAT F7.1') WHAT POWER STEP CHANGE IS DESIRED? USE WRITE (6, 2670) 2670 FORMAT (X, EXAMPLE: IF POWER STEP IS -100MW, TYPE + IN -0100.0') READ 2680, DN2 2680 FORMAT (F7.1) IF (((DN2 + N10) .GE. 0.0) .OR. ((DN2 + N10) .LE. 3000.0)) GO TO 2710 WRITE (6, 2690) 2690 FORMAT (X, ' YOU HAVE SELECTED A POWER STEP WHICH + PLACES TOTAL POWER OUTSIDE') WRITE (6, 2700)

20050	1198	2700 FORMAT (X, ' PERMISSIBLE PARAMETERS. YOU WILL HAVE
29950 29975	1199	+ TO TRY AGAIN.')
30000	1200	
30025	1201	GO TO 2520
30050	1202	
30075	1203	2710 DN1 = DN2 * 1.0E06
30100	1204	1F(NK, EQ, 1) CS = 2
30125	1205	IF(NK, EQ, 1) $EIG = 2$
30150	1206	IF(NK, EQ, 1) $PJ = 2$
30175	1207	$IF(NK \cdot EQ \cdot 1)$ $RI = 2$
30200	1208	
30225	1209	
30250	1210	2720 VOSS = N10 / 3000.0
30275	1211	2720 VOSS = N10 / 3000.0 DVO = 0.0
30300	1212	IF (NK . EQ. 1) GO TO 3050
30325	1213	
30350	1214	
30375	1215	C
30400	1216	C HERE THE USER DECIDES ON WHETHER TO INDUCE A PERTURBATION BY
30425	1217	C. VARYING THE STEAM GENERATOR THROTTLE VALVE INSTEAD OF VARYING THE
30420	1218	C REACTOR. IF THIS IS SELECTED, ANY PREVIOUSLY SELECTED REACTIVITY
30475	1219	C CHANGE WILL BE SET EQUAL TO ZERO. MAXIMUM STEAM VALVE CHANGE IS
30500	1220	C 10%.
30525	1221	C C
30550	1222	2800 WRITE (6, 2810) VOSS
30575	1223	2810 FORMAT (X, ' STEAM GENERATOR IS NOW', 3X, F5.3, ':',
30600	1224	+ 3X, 'THIS REPRESENTS PRESENT VALVE')
30625	1225	WRITE (6, 2820)
30650	1226	2820 FORMAT (X. POSITION. 0.000 MEANS CLOSED, WHILE
30675	1227	+ 1.000 MEANS OPEN.')
30700	1228	2830 WRITE (6, 2840)
30725	1229	2840 FORMAT ('O', ' DO YOU WISH TO INDUCE A PERTURBATION
30750	1230	+ BY CHANGING THE VALVE')
30775	1231	WRITE (6, 2850)
30800	1232	2850 FORMAT (X. ' POSITION? IF "YES", TYPE 1; IF "NO",
30825	1233	+ TYPE 2')
30850	1234	
30875	1235	WRITE (6, 2860)
30900	1236	WRITE (6, 2860) 2860 FORMAT ('0', 'CAUTION: IF A VALVE CHANGE IS THE
30925	1237	+ INITIAL PERTURBATION, THE STEAM')
30950	1238	WRITE (6, 2870)
30975	1239	2870 FORMAT (X, ' GENERATOR MODEL WILL STILL HAVE TO BE
31000	1240	+ USED. AND ANY REACTIVITY')
31025	1241	WRITE (6, 2880)
31050	1242	2880 FORMAT (X, PERTURBATION WILL HAVE TO EQUAL
31075	1243	+ ZERO. HOWEVER, DO NOT WORRY IF')
31100	1244	WRITE (6, 2890)
31125	1245	2890 FORMAT (X, YOU HAVE ALREADY CHOSEN A REACTIVITY
31150	1246	+ STEP STEAM GENERATOR MODEL.')
31175	1247	WRITE (6, 2900)
31200	1248	2900 FORMAT (X, 'OR A.REACTIVITY STEP., IF YOU
31225	1249	+ UTILIZE A VALVE PERTURBATION, THIS')
31250	1250	WRITE (6, 2910)
31275	1251	2910 FORMAT (X. PROGRAM WILL CHOOSE SET ANY REACTIVITY
31300	1252	+ INSERTION EQUAL TO ZERO.')
31325	1253	READ 2930, ZZ
31350	1254	2930 FORMAT (11)

1256 1257 IF ((ZZ .EQ. 1) .OR. (ZZ .EQ. 2)) GO TO 2960 WRITE (6, 2940) 2940 FORMAT (X, YOU HAY + BE UTILIZED. YOU WILL HAVE') YOU HAVE TYPED IN A NUMBER THAT CANNOT WRITE (6, 2950) 2950 FORMAT (X, TO TRY AGAIN. ') GO TO 2830 2960 IF (ZZ .EQ. 1) P = 1 IF (ZZ .EQ. 1) DRO = 0.0 IF (ZZ .EQ. 2) GO TO 3050 (6, 2970) (X, WRITE IF "YES", TYPE IN THE PERCENT CHANGE, 2970 FORMAT + USING FORMAT F5.1') WRITE (6, 2980) 2980 FORMAT (X, IF INITIAL VALVE POSITION IS 0.600 EX: + AND YOU WISH TO DECREASE') +, ON THE OTHER HAND, WOULD') WRITE (6 3000) WRITE (6, 2990) 2990 FORMAT (X, WRITE (6, 3000) CAUTION: NO 3000 FORMAT (X. BE TYPED IN AS 04.0: + CHANGE SHOULD EXCEED') (6, 3010) WRITE PLUS OR MINUS 10%') 3010 FORMAT (X, 3020, DVO RFAD 3020 FORMAT (F5.1) IF ((DVO .GE. -10.0) .AND. (DVO .LE. 10.0)) GO TO 3050 WRITE (6, 3030) 3030 FORMAT (X, ' YOU HAVE SELECTED A VALUE GREATER THAN + PLUS OR MINUS 30%.') WRITE (6, 3040) 3040 FORMAT (X, ' + TO TRY AGAIN.') THIS IS NOT ALLOWED, AND YOU WILL HAVE GO TO 2830 DV0 / 100.0 VOSS + (DV0 * VOSS) 3050 DVO = VO = С HERE THE INITIALIZATION OF SEVERAL VARIABLES TAKES PLACE. THIS INCLUDES THE INTEGER VARIABLES USED IN THE ARRAYS, CPPAV AND MDOTP, AND REACTOR INLET AND OUTLET TEMPERATURES, TIME (SET EQUAL TO ZERO), MODERATOR AND FUEL TEMPERATURES, AND REACTOR HEAT TRA-С C TO ZERO), MODERA FER COEFFICIENT. C . = Y 1.0 F -K -

32800	1312	Q = 2
32825	1313	CPPAV = 5916.241929 + 16.32498553 *EXP(6.488055E-04*N10)
32850	1314	MDOTP = 3.0E09 / ((56.9 + 5.0 / 9.0) + CPPAV)
32875	1315	T11 = (565.0*5.0/9.0) - (28.45*5.0/9.0) * N10 / 3000.0
32900	1316	TO1 = (565.0 + 5.0 / 9.0) + (28.45 + 5.0 / 9.0) + N10 / 3000.0
		DTF(1) = 0.0
32925	1317	
32950	1318	DTI(1) = 0.0
32975	1319	DTM(1) = 0.0
33000	1320	DTO(1) = 0.0
33025	1321	DTSG(1) = 0.0
33050	1322	DTS(1) = 0.0
33075	1323	PT(1) = N10 * 1.0E06
33100	1324	STMG(1)= N10 * 1.0E06
		TT(1) = 0.0
33125	1325	
33150	1326	
33175	1327	FRAC = 0.5 * 5932.566914 / CPPAV
33200	1328	LNT = 1
33225	1329	TM1 = FRAC * (TO1 - TI1) + TI1
33250	1330	TM = TM1
33275	1331	TW = 0.0
33300	1332	TOTHO = 0.0
33325	1333	CPM = 4992.4097749 + 2.49340775E-04 * EXP
Contraction of the second second		+ (0.04825458 * TM1)
33350	1334	
33375	1335	
33400	1336	VMOD = MDOTP / (5.26 * ROP)
33425	1337	KP = 0.712768335 - 3.025E-03 * EXP(0.01321074*TM1)
33450	1338	MUP = -3.53438229E - 07 * TM1 + 1.9978561E - 04
33475	1339	NUP = MUP / ROP
33500	1340	REP = 0.012 # VMOD / NUP
33525	1341	PRP = CPM + NUP + ROP / KP
		NU = 0.025 * (REP ** 0.8) * (PRP ** 0.6)
33550	1342	
33575	1343	HP = NU * KP / 0.012
33600	1344	TC = (N10 + 1.0E06) / (HP + 5945.0) + TM1
33625	1345	TF1 = 25.6933661 * (TC - TM1) + TM1
33650	1346	STMGEN = N10 * 1.0E06
33675	1347	
33700	1348	IF(KF.EQ.1) AA = 0.0
33725	1349	IF (KF .EQ. 1) $ALPHF = 0.0$
33750	1350	IF $(KF, EQ, 1)$ ALPHM = 0.0
33775	1351	IF(KF, EQ, 1) CS = 2
		IF(KF, EQ. 1) RHO = 0.0
33800	1352	
33825	1353	IF (KF . EQ. 1) RHO = 0.0
33850	1354	
33875	1355	
33900	1356	C
33925	1357	C HERE THE USER DECIDES WHETHER THE OUTPUT IS TO BE IN GRAPHICS
33950	1358	C OR IN A TABLE.
33975	1359	C
34000		
	1360	3070 WRITE (6, 3080) 3080 FORMAT ('0'. ' DO YOU WANT OUTPUT IN GRAPHICS, OR IN A
34025	1361	3080 FORMAT ('0', ' DO YOU WANT OUTPUT IN GRAPHICS, OR IN A
34050	1362	+ TABLE? TYPE 1 FOR GRAPHICS, ')
34075	1363	WRITE (6; 3090)
34100	1364	3090 FORMAT (X, ' 2 FOR A TABLE.')
34125	1365	READ 3100, NN
34150	1366	3100 FORMAT (11)
34175	1367	un control a second version of a second
34200	1368	IF ((NN .EQ. 1) .OR. (NN .EQ. 2)) GO TO 3130

WRITE (6, 3110) 3110 FORMAT (X, ' YOU HAVE TYPED IN A NUMBER THAT CANNOT + BE UTILIZED. YOU WILL HAVE') WRITE (6, 3120) 3120 FORMAT (X, TO TRY AGAIN. ') GO TO 3070 3130 IF (NN .EQ. 1) AB = 2 ABN = 0.2IF (NN .EQ. 1) GO TO 3380 IF (NN .EQ. 1) С cc HERE THE USER IS ABLE TO CAUSE TABLE OUTPUT TO BE ABBREVIATED. 3150 FORMAT (X, ' SINCE YOU HAVE CHOSEN A TABLE, BE AWARE + THAT THE PRINTER BY DEFAULT') WRITE (6 3150) WRITE (6, 3160) WILL PRINT OUTPUT EVERY 0.2 SECONDS OF OVER A FULL 5') 3160 FORMAT (X, + SYSTEM TIME. WRITE (6, 3170) 3170 FORMAT (X, + PAGES OF OUTPUT. - MINUTE RUN, THIS WOULD RESULT IN 24 YOU CAN, ') WRITE (6, 3180) HOWEVER, ABBREVIATE THIS BY CAUSING THE 3180 FORMAT (X, + SYSTEM TO PRINT ONLY AT') WRITE (6, 3190) 3190 FORMAT (X. INTERVALS OF 1.0 SECONDS, 2.0 SECS., 4.0 + SECS., 5.0 SECS.,') WRITE (6, 3200) OR 10 SECS., INSTEAD OF 0.2 SECONDS.') 3200 FORMAT (X, WRITE (6, 3210) 3210 FORMAT ('0', ' DO YOU WISH TO ABBREVIATE THE OUTPUT? + IF SO, WRITE (TYPE IN 1; IF NOT, 2') (6, 3220) REMEMBER, IF YOU WISH TO TRUNCATE OUTPUT 3220 FORMAT (X, + ONLY, AND NOT ABBREVIATE, ') WRITE (6, 3230) 3230 FORMAT (X, ' READ 3240, AB YOU WILL BE ABLE TO DO SO LATER. ') 3240 FORMAT (11) IF ((AB .EQ. 1) .OR. (AB .EQ. 2)) GO TO 3280 WRITE (6, 3250) FORMAT (X, 'YOU HAVE TYPED IN A NUMBER THAT CANNOT + BE UTILIZED. YOU WILL HAVE') 3250 FORMAT (X, WRITE (6, 3260) 3260 FORMAT (X, TO TRY AGAIN. ') (6, 3270) WRITE 3270 FORMAT (' ') GO TO 3140 3280 IF (AB .EQ. 2) GO TO 3380

3290 WRITE (6, 3300) 3300 FORMAT (X, ' YOU MAY HAVE OUTPUT PRINTED AT + INTERVALS OF 1. OR 2, OR 4, ') WRITE (6, 3310) 3310 FORMAT (X, ORMAT (X, ' OR 5, OR 10 SECONDS (SYSTEM TIME). CHOOSE ONE OF THESE, USING FORMAT') + WRITE (6, 3320) 3320 FORMAT (X, ' F4.1 -- FOR INSTANCE, A DESIRED INTERVAL + OF 4 SECONDS WOULD BE') (6, 3330) WRITE WRITTEN AS 04.0') 3330 FORMAT (X, 3340, ABN READ 3340 FORMAT (F4.1) IF ((ABN .EQ. 0.2) .OR. (ABN .EQ. 1.0) .OR. (ABN .EQ. 2.0) .(+ (ABN .EQ. 4.0) .OR. (ABN .EQ. 5.0) .OR. (ABN .EQ. 10.0)) + GO TO 3380 OR. WRITE (6, 3350) 3350 FORMAT (X, ' YOU HAVE TYPED IN A NUMBER THAT CANNOT YOU WILL HAVE') + BE UTILIZED. WRITE (6, 3360) 3360 FORMAT (X, 1270) TO TRY AGAIN. ') WRITE (6, 3370) 3370 FORMAT ('') GO TO 3290 C HERE THE USER IS ABLE TO LENGTHEN THE TIME OF THE RUN FROM 1 C MINUTE UP TO 5 MINUTES. C C 3380 WRITE (6, 3390) 3390 FORMAT (X, 'BY DEFAULT, THIS PROGRAM WILL RUN FOR 1 + MINUTE OF "SYSTEM TIME".') WRITE (6, 3400) 3400 FORMAT (X, ' + MUCH AS 5 MINUTES.') 3410 WRITE (6, 3420) 3420 FORMAT ('0', ' YOU CAN, HOWEVER, LENGTHEN THIS TO AS DO YOU WISH TO LENGTHEN THE TIME OF + THE COMPUTER RUN? IF SO, TYPE') WRITE (6, 3430) IN 1;, IF NOT, TYPE IN 2') 3430 FORMAT (X, 3440. LN READ 3440 FORMAT (11) IF ((LN .EQ. 1) .OR. (LN .EQ. 2)) GO TO 3470 WRITE (6, 3450) 3450 FORMAT (X, ' YOU HAVE TYPED IN A NUMBER THAT CANNOT YOU WILL HAVE') + BE UTILIZED. WRITE (6, 3460) 3460 FORMAT (X, TO TRY AGAIN. ') GO TO 3410 3470 IF (LN .EQ. 2) GO TO 3560

3480 WRITE (6, 3490) 3490 FORMAT (X, ' TYPE IN THE AMOUNT OF TIME, IN MINUTES, + THAT YOU WANT THE SYSTEM TO') WRITE (6, 3500) WRITE (6, 3500) 3500 FORMAT (X, + NUMBER) FROM 1 TO 5.') RUN. YOU MAY PICK ANY INTEGER (NOT REAL FORMAT ('0', ' TYPE IN AN INTEGER FROM 1 TO 5. THIS + WILL BE THE TOTAL SYSTEM TIME,') WRITE (6, 3520)) FORMAT (X. ' WRITE (6, 3510) 3510 FORMAT ('0', 3520 FORMAT (X, 3530, LNT READ 3530 FORMAT (11) IF ((LNT .EQ. 1) .OR. (LNT .EQ. 2) .OR. (LNT .EQ. 3) .OR. (LNT .EQ. 4) .OR. (LNT .EQ. 5)) GO TO 3560 WRITE (6, 3540) YOU HAVE TYPED IN A NUMBER THAT CANNOT 3540 FORMAT (X, YOU WILL HAVE') + BE UTILIZED. YOU WILL HAVE') WRITE (6, 3550) 3550 FORMAT (X, TO TRY AGAIN. ') GO TO 3480 3560 LND = 300 * LNT 3570 WRITE (6, 3580) 3580 FORMAT (X, ' SINCE YOU HAVE CHOSEN A TABLE, DO YOU + WANT A HARD COPY, OR WILL THIS') WRITE (6, 3590) 3590 FORMAT (X, 'TERMI + COPY, 6 FOR THE TERMINAL.') TERMINAL SUFFICE? TYPE 8 FOR A HARD 37925 37950 READ 3600, YY 3600 FORMAT (11) IF ((YY .EQ. 6) .OR. (YY .EQ. 8)) GO TO 3640 WRITE (6, 3610) 3610 FORMAT (X, ' YOU HAVE TYPED IN A NUMBER THAT CANNOT YOU MUST TYPE') + BE UTILIZED. WRITE (6, 3620) 3620 FORMAT (X, + DISPLAY.') IN 8 FOR A HARD COPY, 6 FOR A TERMINAL WRITE (6, 3630) 3630 FORMAT ('') GO TO 3570 3640 IF (IS .NE. 1) GO TO 3660 С HERE, THE OPTIONS THE USER HAS SELECTED ARE DISPLAYED. C С WRITE (YY, 3650) 3650 FORMAT (X, THE FUEL TO BE UTILIZED IS U-233. ')

.

GO TO 3700 3660 IF (IS .NE. 2) GO TO 3680 WRITE (YY, 3670) THE FUEL TO BE UTILIZED IS U-235. ') 3670 FORMAT (X, GO TO 3700 3680 WRITE (YY, 3690) 3690 FORMAT (X, ' THE FUEL TO BE UTILIZED IS PU-239. ') 3700 IF (KF .EQ. 2) GO TO 3740 WRITE (YY, 3710) 3710 FORMAT ('0', ' + THERE') WRITE FREE KINETICS WILL BE USED IN THIS RUN. (YY, 3720) WILL BE NO FEEDBACK, NO CONTROL SYSTEM, 3720 FORMAT (X, + AND') WRITE WRITE (YY, 3730) 3730 FORMAT (X, + ZERO.') PEACTIVITY COEFFICIENTS WILL BE EQUAL TO GO TO 3860 3740 WRITE (YY, 3750) 3750 FORMAT ('0', ' + WILL BE') WRITE (YY, 3760) 3760 FORMAT (X, ' FEEDBACK WITH REACTIVITY COEFFICIENTS USED. ') WRITE (YY, 3770) RHON 3770 FORMAT ('0', ' PRE-PERTURBATION REACTIVITY IS', 18X, + F4.1, 8X, 'CENTS') WRITE (YY, 3780) ALPHF 3780 FORMAT (X, 'DOPPLER COEFFICIENT OF REACTIV + 12X, E10.3, 2X, '(DK/K)/C') WRITE (YY, 3790) ALPHM 3790 FORMAT (X, 'MODERATOR TEMP. COEFFICIENT OF + REACTIVITY IS', 4X, E10.3, 2X, '(DK/K)/C') DOPPLER COEFFICIENT OF REACTIVITY IS', IF (CS .EQ. 1) GO TO 3810 WRITE (YY, 3800) 3800 FORMAT ('0', ' A CONTROL SYSTEM WILL NOT BE USED. ') GO TO 3860 3810 WRITE (YY, 3820) 3820 FORMAT ('0', ' WRITE (YY, 3830) AA A CONTROL SYSTEM WILL BE USED. ') WRITE (YY, 3840) TAUC GAIN EQUALS', 27X, E8.1) TIME CONSTANT EQUALS', 28X, F3.1)

39925	1597	WRITE (YY, 3850) TAU	
39950	1598	3850 FORMAT (X,	PARAMETER TAU EQUALS', 28X, F3.1)
39975	1599		
40000	1600	3860 IF (EIG .EQ. 1) GO TO 3	890
40025	1601		
		WRITE (VV 3870)	
40050	1602	WRITE (YY, 3870)	THE "MATRIX DECOUPLING" ALGORITHM
40075	1603	3870 FORMAT (X,	THE MATRIX DECOUPEING ACCONTINU
40100	1604	+ WILL NOT')	
40125	1605	WRITE (YY, 3880)	
40150	1606	3880 FORMAT (X, '	BE USED.')
40175	1607	A CONTRACTOR CONTRACTOR AND A CONTRACTOR	
40200	1608	GO TO 3930	
	1609	00 10 0700	
40225		2000 URITE (VV 3000)	
40250	1610	3890 WRITE (YY, 3900) 3900 FORMAT ('0',	THE "MATRIX DECOUPLING" ALGORITHM
40275	1611	3900 FORMAT (0 ,	THE MATRIX DECOUPEING ACCONTINU
40300	1612	+ WILL BE')	
40325	1613	WRITE (YY, 3910)	
40350	1614	3910 FORMAT (X,	USED.')
40375	1615	WRITE (YY, 3920)	
40400	1616	1920 FURMAL LA.	THE PROMPT-JUMP APPROXIMATION WILL NOT
40425	1617	+ BE USED.')	
		. DE OGED. /	
40450	1618	3930 IF (PJ .EQ.1) GO TO 395	0
40475	1619	3930 IF (PJ .EQ. I) GO TO 395	0
40500	1620		
40525	1621	WRITE (YY, 3940) 3940 FORMAT ('0',	CONTRACTOR AND ADDRESS AND AND AND ADDRESS
40550	1622	3940 FORMAT ('O', '	PROMPT-JUMP APROXIMATION WILL NOT BE
40575	1623	+ USED.')	
40600	1624		
		00 70 2000	•
40625		60 10 3980	
40625	1625	GO TO 3980	
40650	1626		10
40650 40675	1626 1627	3950 WRITE (YY, 3960)	PROMPT- UMP APPROXIMATION WILL BE USED!)
40650 40675 40700	1626 1627 1628	3950 WRITE (YY, 3960) 3960 FORMAT ('0', '	PROMPT-JUMP APPROXIMATION WILL BE USED')
40650 40675 40700 40725	1626 1627 1628 1629	3950 WRITE (YY, 3960) 3960 FORMAT ('0', ' WRITE (YY, 3970)	
40650 40675 40700 40725 40750	1626 1627 1628 1629 1630	3950 WRITE (YY, 3960) 3960 FORMAT ('0', ' WRITE (YY, 3970)	PROMPT-JUMP APPROXIMATION WILL BE USED') MATRIX DECOUPLING WILL NOT.')
40650 40675 40700 40725 40750 40775	1626 1627 1628 1629 1630 1631	3950 WRITE (YY, 3960) 3960 FORMAT ('0', ' WRITE (YY, 3970) 3970 FORMAT (X, '	
40650 40675 40700 40725 40750	1626 1627 1628 1629 1630	3950 WRITE (YY, 3960) 3960 FORMAT ('0', ' WRITE (YY, 3970)	
40650 40675 40700 40725 40750 40775	1626 1627 1628 1629 1630 1631	3950 WRITE (YY, 3960) 3960 FORMAT ('0', ' WRITE (YY, 3970) 3970 FORMAT (X, '	
40650 40675 40700 40725 40750 40775 40800 40825	1626 1627 1628 1629 1630 1631 1632	3950 WRITE (YY, 3960) 3960 FORMAT ('0', ' WRITE (YY, 3970) 3970 FORMAT (X, '	MATRIX DECOUPLING WILL NOT.')
40650 40675 40700 40725 40750 40775 40800 40825 40850	1626 1627 1628 1629 1630 1631 1632 1633 1633	3950 WRITE (YY, 3960) 3960 FORMAT ('0', ' WRITE (YY, 3970) 3970 FORMAT (X, ' GO TO 4050	MATRIX DECOUPLING WILL NOT.')
40650 40675 40700 40725 40750 40775 40800 40825 40850 40850 40875	1626 1627 1628 1629 1630 1631 1632 1633 1633 1634	3950 WRITE (YY, 3960) 3960 FORMAT ('0', ' WRITE (YY, 3970) 3970 FORMAT (X, ' GO TO 4050 3980 IF (RI .EQ. 1) GO TO 40	MATRIX DECOUPLING WILL NOT.')
40650 40675 40700 40725 40750 40750 40800 40825 40850 40850 40875 40900	1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636	3950 WRITE (YY, 3960) 3960 FORMAT ('0', ' WRITE (YY, 3970) 3970 FORMAT (X, ' GO TO 4050 3980 IF (RI .EQ. 1) GO TO 40	MATRIX DECOUPLING WILL NOT.')
40650 40675 40700 40725 40750 40775 40800 40825 40850 40850 40875 40900 40925	1626 1627 1628 1629 1630 1631 1632 1633 1633 1635 1635 1636 1637	3950 WRITE (YY, 3960) 3960 FORMAT ('0', ' WRITE (YY, 3970) 3970 FORMAT (X, ' GO TO 4050	MATRIX DECOUPLING WILL NOT.')
40650 40675 40700 40725 40750 40775 40800 40825 40850 40875 40900 40925 40950	1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638	3950 WRITE (YY, 3960) 3960 FORMAT ('0', ' WRITE (YY, 3970) 3970 FORMAT (X, ' GO TO 4050 3980 IF (RI .EQ. 1) GO TO 40 WRITE (YY, 3990) 3990 FORMAT ('0', '	MATRIX DECOUPLING WILL NOT.')
40650 40675 40700 40725 40750 40750 40800 40825 40850 40850 40875 40900 40925 40950 40975	1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639	3950 WRITE (YY, 3960) 3960 FORMAT ('0', ' WRITE (YY, 3970) 3970 FORMAT (X, ' GO TO 4050 3980 IF (RI .EQ. 1) GO TO 40	MATRIX DECOUPLING WILL NOT.')
40650 40675 40700 40725 40750 40775 40800 40825 40850 40875 40900 40925 40950 40950 40950 40955 41000	1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1635 1636 1637 1638 1639 1640	3950 WRITE (YY, 3960) 3960 FORMAT ('0', ' WRITE (YY, 3970) 3970 FORMAT (X, ' GO TO 4050 3980 IF (RI .EQ. 1) GO TO 40 WRITE (YY, 3990) 3990 FORMAT ('0', ' GO TO 4050	MATRIX DECOUPLING WILL NOT.')
40650 40675 40700 40725 40750 40800 40825 40850 40850 40925 40900 40925 40950 40975 41000 41025	1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641	3950 WRITE (YY, 3960) 3960 FORMAT ('0', ' WRITE (YY, 3970) 3970 FORMAT (X, ' GO TO 4050 3980 IF (RI .EQ. 1) GO TO 40 WRITE (YY, 3990) 3990 FORMAT ('0', ' GO TO 4050	MATRIX DECOUPLING WILL NOT.') 00 RAMP-INPUT MODEL WILL NOT BE USED.')
40650 40675 40700 40725 40750 40775 40800 40825 40850 40875 40900 40925 40950 40950 40950 40955 41000	1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1635 1636 1637 1638 1639 1640	3950 WRITE (YY, 3960) 3960 FORMAT ('0', ' WRITE (YY, 3970) 3970 FORMAT (X, ' GO TO 4050 3980 IF (RI .EQ. 1) GO TO 40 3990 FORMAT ('0', ' GO TO 4050 4000 WRITE (YY, 4010) 4010 FORMAT ('0', '	MATRIX DECOUPLING WILL NOT.')
40650 40675 40700 40725 40750 40800 40825 40850 40850 40925 40900 40925 40950 40975 41000 41025	1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641	3950 WRITE (YY, 3960) 3960 FORMAT ('0', '3970) WRITE (YY, 3970) 3970 FORMAT (X, ' GO TO 4050 3980 IF (RI .EQ. 1) GO TO 40 WRITE (YY, 3990) 3990 FORMAT ('0', ' GO TO 4050 4000 WRITE (YY, 4010) 4010 FORMAT ('0', ' WRITE (YY, 4020) RIR	MATRIX DECOUPLING WILL NOT.') 00 RAMP-INPUT MODEL WILL NOT BE USED.') RAMP-INPUT MODEL WILL BE USED.')
40650 40675 40700 40725 40750 40825 40825 40850 40855 40900 40925 40950 40950 40975 41000 41025 41050	1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642	3950 WRITE (YY, 3960) 3960 FORMAT ('0', '3970) WRITE (YY, 3970) 3970 FORMAT (X, ' GO TO 4050 3980 IF (RI .EQ. 1) GO TO 40 WRITE (YY, 3990) 3990 FORMAT ('0', ' GO TO 4050 4000 WRITE (YY, 4010) 4010 FORMAT ('0', ' WRITE (YY, 4020) RIR	MATRIX DECOUPLING WILL NOT.') 00 RAMP-INPUT MODEL WILL NOT BE USED.')
40650 40675 40700 40725 40750 40775 40800 40825 40850 40875 40900 40925 40950 40975 41000 41025 41050 41075	1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643	3950 WRITE (YY, 3960) 3960 FORMAT ('0', '3970) WRITE (YY, 3970) 3970 FORMAT (X, ' GO TO 4050 3980 IF (RI .EQ. 1) GO TO 40 WRITE (YY, 3990) 3990 FORMAT ('0', ' GO TO 4050 4000 WRITE (YY, 4010) 4010 FORMAT ('0', ' WRITE (YY, 4020) RIR	MATRIX DECOUPLING WILL NOT.') 00 RAMP-INPUT MODEL WILL NOT BE USED.') RAMP-INPUT MODEL WILL BE USED.')
40650 40675 40700 40725 40750 40800 40825 40850 40825 40900 40925 409950 409950 40975 41000 41025 41050 41075 41100 41125	1626 1627 1628 1629 1631 1632 1633 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1644 1644 1645	3950 WRITE (YY, 3960) 3960 FORMAT ('0', '3970) 3970 FORMAT (X, ' GO TO 4050 3980 IF (RI .EQ. 1) GO TO 40 WRITE (YY, 3990) 3990 FORMAT ('0', ' GO TO 4050 4000 WRITE (YY, 4010) 4010 FORMAT ('0', '4020) RIR WRITE (YY, 4020) RIR 4020 FORMAT (X, ' + 'CENTS/S')	MATRIX DECOUPLING WILL NOT.') 00 RAMP-INPUT MODEL WILL NOT BE USED.') RAMP-INPUT MODEL WILL BE USED.')
40650 40675 40700 40725 40750 40775 40800 40825 40850 40850 40925 40950 40925 40950 40975 41000 41025 41050 41025 41050 41025 41150	1626 1627 1628 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1641 1644 1644 1644 1644 1644 1644 164	3950 WRITE (YY, 3960) 3960 FORMAT ('0', ' WRITE (YY, 3970) 3970 FORMAT (X, ' GO TO 4050 3980 IF (RI .EQ. 1) GO TO 40 WRITE (YY, 3990) 3990 FORMAT ('0', ' GO TO 4050 4000 WRITE (YY, 4010) 4010 FORMAT ('0', ' WRITE (YY, 4020) RIR 4020 FORMAT (X, ' + 'CENTS/S') WRITE (YY, 4030)	MATRIX DECOUPLING WILL NOT.') 00 RAMP-INPUT MODEL WILL NOT BE USED.') RAMP-INPUT MODEL WILL BE USED.') RAMP-INPUT RATE IS', 28X, F5.1, 7X,
40650 40675 40700 40725 40775 40800 40825 40850 40850 40925 40900 40925 40950 40975 41000 41025 41050 41075 41100 41125 41150 41175	1626 1627 1628 1630 1631 1632 1633 1634 1635 1636 1637 1638 1637 1638 1639 1641 1644 16445 16445 16445 16445	3950 WRITE (YY, 3960) 3960 FORMAT ('0', '3970) 3970 FORMAT (X, ' GO TO 4050 3980 IF (RI .EQ. 1) GO TO 40 WRITE (YY, 3990) 3990 FORMAT ('0', ' GO TO 4050 4000 WRITE (YY, 4010) 4010 FORMAT ('0', ' WRITE (YY, 4020) RIR 4020 FORMAT (X, ' + 'CENTS/S') WRITE (YY, 4030) 4030 FORMAT (X, '	MATRIX DECOUPLING WILL NOT.') 00 RAMP-INPUT MODEL WILL NOT BE USED.') RAMP-INPUT MODEL WILL BE USED.') RAMP-INPUT RATE IS', 28X, F5.1, 7X, DURATION OF RAMP-INPUT INSERTION IS',
40650 40675 40700 40725 40775 40800 40825 40850 40850 40925 40900 40925 40950 40975 41000 41025 41050 41025 41125 41125 41125 41125	1626 1627 1628 1629 1631 1632 1633 1633 1633 1635 1636 1637 1638 1637 1638 1639 1644 16442 16443 16445 16447 16448	3950 WRITE (YY, 3960) 3960 FORMAT ('0', '3970) 3970 FORMAT (X, ' GO TO 4050 3980 IF (RI .EQ. 1) GO TO 40 WRITE (YY, 3990) 3990 FORMAT ('0', ' GO TO 4050 4000 WRITE (YY, 4010) 4010 FORMAT ('0', ' WRITE (YY, 4020) RIR 4020 FORMAT (X, ' + 'CENTS/S') WRITE (YY, 4030) 4030 FORMAT (X, ' + 11X, F5.1, 7X, 'SECONDS	MATRIX DECOUPLING WILL NOT.') 00 RAMP-INPUT MODEL WILL NOT BE USED.') RAMP-INPUT MODEL WILL BE USED.') RAMP-INPUT RATE IS', 28X, F5.1, 7X, DURATION OF RAMP-INPUT INSERTION IS',
40650 40675 40700 40725 40775 40800 40825 40850 40825 40925 40925 40950 40925 41000 41025 41050 41075 41100 41125 41150 41175 41200 41225	1626 1627 1628 1629 1631 1632 1633 1633 1633 1633 1633 1633	3950 WRITE (YY, 3960) 3960 FORMAT ('0', '3970) 3970 FORMAT (X, ' GO TO 4050 3980 IF (RI .EQ. 1) GO TO 40 WRITE (YY, 3990) 3990 FORMAT ('0', ' GO TO 4050 4000 WRITE (YY, 4010) 4010 FORMAT ('0', ' WRITE (YY, 4020) RIR 4020 FORMAT (X, ' + 'CENTS/S') WRITE (YY, 4030) 4030 FORMAT (X, ' + 11X, F5.1, 7X, 'SECONDS WRITE (YY, 4040) PROD	MATRIX DECOUPLING WILL NOT.') 00 RAMP-INPUT MODEL WILL NOT BE USED.') RAMP-INPUT MODEL WILL BE USED.') RAMP-INPUT RATE IS', 28X, F5.1, 7X, DURATION OF RAMP-INPUT INSERTION IS', ')
40650 40675 40700 40725 40750 40800 40825 40850 40850 40925 409900 40925 40990 40925 41000 41025 41005 41050 41125 41150 41125 41125 41250	1626 1627 1628 1629 1631 1632 1633 1633 1633 1633 1633 1633	3950 WRITE (YY, 3960) 3960 FORMAT ('0', ' WRITE (YY, 3970) 3970 FORMAT (X, ' GO TO 4050 3980 IF (RI .EQ. 1) GO TO 40 WRITE (YY, 3990) 3990 FORMAT ('0', ' GO TO 4050 4000 WRITE (YY, 4010) 4010 FORMAT ('0', ' WRITE (YY, 4020) RIR 4020 FORMAT (X, ' + 'CENTS/S') WRITE (YY, 4030) 4030 FORMAT (X, ' + 11X, F5.1, 7X, 'SECONDS WRITE (YY, 4040) PROD 4040 FORMAT (X, '	MATRIX DECOUPLING WILL NOT.') 00 RAMP-INPUT MODEL WILL NOT BE USED.') RAMP-INPUT MODEL WILL BE USED.') RAMP-INPUT RATE IS', 28X, F5.1, 7X, DURATION OF RAMP-INPUT INSERTION IS',
40650 40675 40700 40725 40750 40825 40825 40850 40855 40900 40925 40950 40950 40955 41000 41025 41050 41025 41100 41125 41150 41125 41120 41125 41250 41255 41250 41275	1626 1627 1628 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1641 1644 1644 1644 1644 1644 1644 164	3950 WRITE (YY, 3960) 3960 FORMAT ('0', '3970) 3970 FORMAT (X, ' GO TO 4050 3980 IF (RI .EQ. 1) GO TO 40 WRITE (YY, 3990) 3990 FORMAT ('0', ' GO TO 4050 4000 WRITE (YY, 4010) 4010 FORMAT ('0', ' WRITE (YY, 4020) RIR 4020 FORMAT (X, ' + 'CENTS/S') WRITE (YY, 4030) 4030 FORMAT (X, ' + 11X, F5.1, 7X, 'SECONDS WRITE (YY, 4040) PROD	MATRIX DECOUPLING WILL NOT.') 00 RAMP-INPUT MODEL WILL NOT BE USED.') RAMP-INPUT MODEL WILL BE USED.') RAMP-INPUT RATE IS', 28X, F5.1, 7X, DURATION OF RAMP-INPUT INSERTION IS', ')
40650 40675 40700 40725 40750 40800 40825 40850 40850 40925 409900 40925 40990 40925 41000 41025 41005 41050 41125 41150 41125 41125 41250	1626 1627 1628 1629 1631 1632 1633 1633 1633 1633 1633 1633	3950 WRITE (YY, 3960) 3960 FORMAT ('0', ' WRITE (YY, 3970) 3970 FORMAT (X, ' GO TO 4050 3980 IF (RI .EQ. 1) GO TO 40 WRITE (YY, 3990) 3990 FORMAT ('0', ' GO TO 4050 4000 WRITE (YY, 4010) 4010 FORMAT ('0', ' WRITE (YY, 4020) RIR 4020 FORMAT (X, ' + 'CENTS/S') WRITE (YY, 4030) 4030 FORMAT (X, ' + 11X, F5.1, 7X, 'SECONDS WRITE (YY, 4040) PROD 4040 FORMAT (X, '	MATRIX DECOUPLING WILL NOT.') 00 RAMP-INPUT MODEL WILL NOT BE USED.') RAMP-INPUT MODEL WILL BE USED.') RAMP-INPUT RATE IS', 28X, F5.1, 7X, DURATION OF RAMP-INPUT INSERTION IS', ')

41350 41375	1055	4060 FORMAT ('0', ' + 8X, 'CENTS')	REACTIVITY PERTURBATION IS', 22X, F4.1,
41400 41425 41450 41475	1656 1657 1658 1659	WRITE (YY, 4070) N10 4070 FORMAT ('0', + 'MW')	INITIAL POWER LEVEL IS', 26X, F6.1, 6X,
41500 41525 41550 41575	1660 1661 1662 1663	WRITE (YY, 4140) VO 4140 FORMAT ('0', + 15X, F5.3, 7X, 'OPEN')	STEAM GENERATOR VALVE POSITION IS',
41600 41625	1664	IF (ZZ .EQ. 1) GO TO 416	0
41650	1666		
41675	1667 1668 1669	WRITE (YY, 4150) 4150 FORMAT ('0',	THERE IS NO VALVE INDUCED PERTURBATION')
41725 41750	1670	GO TO 4190	
41775	1671		
41800	1672	4160 WRITE (YY, 4170)	SYSTEM PERTURBATION WILL BE A VALVE ALVE CHANGE IS', 34X, F4.1, 8X,
41825	1673	4170 FORMAT (U ,	STSTEM PERIORBATION WILL DE A VALVE
41850 . 41875	1674 1675	WRITE (YY, 4180) DVO	
41900	1676	4180 FORMAT (X. ' V	ALVE CHANGE IS', 34X, F4.1, 8X,
41925	1677	+ 'PERCENT.')	
41950	1678		
41975	1679	4190 IF (AB .EQ. 2) GO TO 422	0
42000	1680	UDITE (XX 1200)	
42025	1681	WRITE (11, 4200)	OUTPUT WILL BE ABBREVIATED. PRINTING
42050 42075	1682	+ WILL OCCUR EVERY')	OUTPUT WILL BE ABBREVIATED. PRINTING
42100	1684	WRITE (YY 4210) ABN	
42125	1685	4210 FORMAT (X, F4	.1, 3X, 'SECONDS, SYSTEM TIME.')
42150	1686		
42175	1687	GO TO 4250	
42200	1688	1220 LIPITE (VV 1220)	
42225 42250	1689 1690	4220 WRITE (YY, 4230) 4230 FORMAT ('0', '	OUTPUT IS NOT ABBREVIATED. PRINTING
42275	1691	+ WILL OCCUR EVERY')	
42300	1692	WRITE (YY, 4240)	
42325	1693	4240 FORMAT (X, ' 0	.2 SECONDS, SYSTEM TIME.')
42350	1694	WRITE (YY, 4240) 4240 FORMAT (X, ' 0 4250 WRITE (YY, 4260) 4260 FORMAT ('0', '	TOTAL OVETEN TIME OF THIS DIN IS!
42375	1695	4260 FORMAT ('0', + 24X, 11, 4X, 'MINUTES')	TOTAL SYSTEM TIME OF THIS RUN IS',
+2400	1696 1697	+ 24A, 11, 4A, MINUTES)	
+2450	1698	IF (NN . EQ. 1) GO TO 428	0
42475	1699		
12500	1700	WRITE (YY, 4270) 4270 FORMAT ('0', '	OUTDUT VILL DE IN A TADIE!)
12525	1701	4270 FORMAT (0,	OUTPUT WILL BE IN A TABLE)
12550	1702 1703	GO TO 4300	
12600	1704		
12625	1705	4280 WRITE (YY, 4290) 4290 FORMAT ('0',	
12650	1706	4290 FORMAT ('0', '	OUTPUT WILL BE IN GRAPHICS.')
2675	1707 1708 1709	4300 IF (YY .EQ. 6) GO TO 432	
2750	1710	WRITE (YY, 4310)	
0		 Sign and Sign and Sign and an analysis 	

*

HARD COPY WILL BE PRODUCED. ') 4310 FORMAT ('0', ' GO TO 4360 4320 WRITE (YY, 4330) 4330 FORMAT ('0', + IN THE') OUTPUT OF GRAPHICS WILL BE ON TERMINAL WRITE (YY, 4340) 4340 FORMAT (X, + USE THE') WRITE (YY, 4350) 4350 FORMAT (X, IGL LAB. TO GET A HARD COPY, YOU MUST 4051 TEKTRONICS TERMINAL') 4360 CONTINUE 4370 WRITE (YY, 4380) 4380 FORMAT ('') WRITE (YY, 4390) 4390 FORMAT (') IF (NN .EQ. 1) GO TO 4460 WRITE (YY, 4400) 4400 FORMAT (2X, 'TIME', 5X, 'FUEL', 6X, 'MODERATOR', 3X, 'RECTOR', + 4X, 'REACTOR', 5X, 'TURBINE', 3X, 'REACTOR') 4400 FORMAT (2X, 'TIME', 5A, 'TURBINE', 3X, REACTOR', WRITE (YY, 4410) 4410 FORMAT (11X, 'TEMP', 6X, 'TEMP', 8X, 'INLET', 6X, 'OUTLET', 6X, WRITE (YY, 4420) 4420 FORMAT (33X, 'TEMP', 7X, 'TEMP') WRITE (YY, 4430) 4430 FORMAT (X, '(SEC)', 4X, '(DEG. C)', 2X, '(DEG. C)', 4X, '(DEG. C)', 3X, '(DEG. C)', 4X, '(MW)', 6X, '(MW)') WRITE (YY, 4440) (YY, 4450) TT(1), TF1, TM1, T11, T01, N10, N10 (2X, F3.1, 5X, F8.3, 3X, F8.4, 4X, F8.4, 3X, F8.4, 4X, F8.3, 2X, F8.3) WRITE 4450 FORMAT 43750 43775 CC HERE REACTOR POWER IS CONVERTED FROM MW TO W, WHICH IS THE FORMAT THAT WILL BE DISPLAYED IN THE OUTPUT. С С N10 # 1.0E06 N10 RP(K) =DN1 + N10 DO 4540 1 = 1, LND C HERE, OUTPUT IS DISPLAYED. FIRST, REACTOR KINETICS IS COMPUTED FOR 0.005 SECONDS, IN THE GALBA SUBROUTINE. THEN THERMAL HYDRAULICS IS COMPUTED IN OTHO. CONTROL THEN PAASES BACK TO GALBA, AND THIS PROCESS KEEPS ON GOING UNTIL 0.2 SECONDS HAS ELAPSED, AT WHICH TIME CONTROL PASSES TO DMTN. AFTER DMTN COMPUTES ST GENERATOR OUTPUT, ONE ITERATION OF "DO" LOOP 4540 IS COMPLETE. FIRST, REACTOR KINETICS IS COMPU-С C C

THIS "DO" LOOP KEEPS ON ITERATING UNTIL (LND MINUTES TIMES 300) ITERATIONS ARE COMPLETE. (LND IS THE AMOUNT OF TIME IN MINUTES THAT THE PROGRAM WILL RUN.) EVERY 0.2 SECONDS, THOSE QUANTITIES WHICH CAN APPEAR IN THE OUTPUT ARE COMPUTED. IF GRAPHICS IS CALLED FOR, THE GRAPHICS SUBROUTINE VESPASIAN IS CALLED ON THE VERY LAST ITERATION OF "DO" LOOP 4540. C CC C C C C 4470 IF (Y .EQ. 1.0) H = 0.000001 IF (Y .EQ. 1.0) GO TO 4480 IF (Y .NE. 1.0) H = 0.001 4480 CALL GALBA CONTINUE Y + 1.0 Y -4490 CALL OTHO TOTHO + 0.005 TOTHO = TOTHO = 1010 + 0.00 IF (NK .EQ. 1) TOTHO = 0.2 IF (TOTHO .LE. 0.197) GO 1 GO TO 4480 TOTHO = 0.0 IF (NN .EQ. 2) IF (I .LE. (LND-1)) 4500 CALL VESPASIAN 4510 TT(K) = TT(I CALL DMTN GO TO 4510 GO TO 4510 TT(K-1) + 0.2TF = TF1 + DTF(K) = TM1 + DTM(K)TM (K .LE. (K .GT. TI = TI1TI = TI1 + DTI(K-29)55) 55) 1 F IF TO TO1 + DTO(K)= TW + 0.2 (N10 + DN1) / 1.0E06 TW = N110 = / 1.0E06 STMGEN STMGN = N10 + DN1 PT(K) = STMGEN STMG(K) =IF (ABN .GT. (TW + 0.01)) GO TO 4530 IF (NN .EQ. 1) GO TO 4530 WRITE (YY, 4520) TT(K), TF, TM, TI, TO, STMGN, N110 4520 FORMAT (X, F5.2, 4X, F8.3, 3X, F8.4, 4X, F8.4, 3X, F8.4, + 4X, F8.3, 2X, F8.3) 4530 CONTINUE IF (ABN .LE. (TW + 0.01)) TW = 0.0 K + 1 Q + 1 K = Q -4540 CONTINUE STOP END

POWER KINETICS EQUATIONS C SUBBOUTINE GALBA C IT DEPICTS REACTOR KINETICS. THIS IS THE SUBROUTINE GALBA. IT RECEIVES THE FOLLOWING PARAMETERS FROM THE MAIN AS INPUT. PROGRAM NERO: ISOTOPE TO BE USED. THE WHETHER MATRX DECOUPLING IS TO BE USED. WHETHER A CONTROL SYSTEM IS TO BE USED, AND IF SO. ITS PARAMETERS. WHETHER FEEDBACK IS TO BE USED, AND IF SO, THE REAC-TIVITY COEFFICCIENTS ASSOCIATED WITH IT. INITIAL POWER LEVEL. REACTIVITY STEP. IF ANY. WHETHER THE PROMPT JUMP APPROXIMATION IS TO BE USED. WHETHER THE RAMP-INPUT MODEL IS TO BE USED, AND IF SO, THE MAGNITUDE OF THE RAMP AND HOW LONG IT LASTS. GALBA THEN COMPUTES REACTOR POWER CHANGES (FROM INITIAL LEVELS) AND THEN PASSES THIS INFORMATION ON TO THE THERMAL-CC TIME STEPS IN GALBA ARE 0.001 SECONDS, HYDRAULICS SUBROUTINE OTHO. CCC EXCEPT DURING THE FIRST 0.001 SECOND WHEN THEY ARE ARBITRARILY SMALLER, AND FOR THE SLOW MODE OF THE MATRIX DECOUPLING ALGORITHM, WHERE THE TIME STEPS ARE 200 TIMES THE SIZE OF THE FAST MODE TIME STEP (ALWAYS 0.001 SECONDS, EXCEPT DURING THE FIRST 0.001 SECOND). THE REASON THE TIME STEPS ARE ARBITRARILY SMALL AT FIRST IS THAT THE EQUATIONS ARE EFFECTIVE FOR TIME STEPS IN WHICH POWER DOES NOT VARY GREATLY. SINCE POWER DOES VARY GREATLY DURING THE PROMPT JUMP, SMALL TIME STEPS ARE USED SO THAT THE EQUATIONS CAN BE SOLVED FOR A TIME STEP IN WHICH POWER DOES NOT VARY GREATLY. GALBA WILL FOR A TIME STEP IN WHICH POWER DUES NOT VARY GREATLY. GALBA WILL EXECUTE FOR 0.005 SECONDS AT A TIME, THEN PASS CONTROL TO THE THERMAL HYDRAULICS SUBROUTINE OTHO. OTHO THEN COMPUTES MODERATOR TEMPERATURE, REACTOR OUTLET TEMPERATURE AND FUEL TEMP-ERATURE, AND IF THE TOTAL TIME IN THE CURRENT CYCLE IS LESS THAN 0.2 SECONDS, CONTROL IS PAASED BACK TO GALBA; OTHERWISE CONTROL IS PASSED ON TO THE STEAM GENERATOR SUBROUTINE. GALBA SOLVES THE POINT-KINETICS EQUATIONS FOR CHANGES IN REAC-TOR POWER FROM STEADY-STATE CONDITIONS. IN THE EQUATIONS USED HERE, SIX GROUPS OF DELAYED-NEUTRON PRECURSORS ARE USED. THE POINT-KINETICS EQUATIONS ARE A SYSTEM OF TWO COUPLED DIFFERENTIAL EQUATIONS IN WHICH ONE EQUATION SARE A SYSTEM OF TWO COUPLED DIFERENTIAL EQUATIONS IN WHICH ONE EQUATION SOLVES FOR THE DELAYED-NEUTRON PRECURSORS, AND THE OTHER FOR REACTOR POWER. IT IS POSSIBLE TO SEPARATE, OR DECOUPLE, THE POINT-KINETICS EQUATIONS INTO TWO INDEPENDENT EQUATIONS, ONE OF WHICH SOLVES FOR THE DELAYED-NEUTRON PRECURSORS ALONE, THE OTHER FOR REACTOR POWER ALONE. THIS IS DONE BY MEANS OF A TRANSFORMATION MATRIX WHICH IS DEPENDENT UPON THE EIGENVALUES AND EIGENVECTORS OF THE COEFFICIENT MATRIX OF THE COUPLED POINT-KINETICS EQUATIONS. SLOW TIME STEPS ARE USED FOR THE DELAYED-NEUTRON PRECURSORS, FAST ONES FOR THE POWER RESPONSE. ARITHMETIC ERROR IS THUS AVOIDED IN SOLVING FOR THE DELAYED-NEUTRONS, WHILE CPU TIME IS ALSO SAVED. AN INVERSE TRANSFORMATION MATRIX THEN CONVERTS THESE SOLUTIONS BACK INTO THE ORIGINAL VARIABLES. THE POINT-KINETICS EQUATIONS CAN ALSO BE SOLVED USING THE

02900	0058	C	PROMPT-JUMP APPROXIMATION AND THE RAMP-INPUT MODEL. IN THE	
02950	0059	C	PROMPT-IUMP APPROXIMATION. THE ASSUMPTION IS THAT THE PROMPT-	
03000	0060	C	HIMP TAKES PLACE IN ZERO TIME RATHER THAN IN A VERY SMALL TIME.	
03050	0061	č	AND THUS THE POWER LEVEL JUMPS INSTANTLY FROM THE INITIAL LEVEL	
03100	0062	č	TO THE NEW LEVEL. IN THE RAMP-INPUT MODEL, REACTIVITY IS INSERTE	D
	0063	č	OVER A PERIOD OF TIME INSTEAD OF INSTANTANEOUSLY.	
03150		č	WER A PERIOD OF THE HOTELD OF HOTELD OF	
03200	0064	C	COMMON AA, ADTI, ADTO, ALPHF, ALPHM, CPPAV, CS, DN1, DRO,	
03250	0065			
03300	0066		+ DTF, DTI, DIM, DTO, DTS, DTSG, ETG, F, H, TS, K, KF,	
03350	0067		+ LND, MDOTP, NK, NN, N10, Q, PJ, PT, RHO, RI, RIR,	
03400	0068		+ RP, STMG, STMGEN, TAU, TAUC, TF1, TM, TT, TTOT, VO,	
03450	0069		+ VOSS, Y, ZZ	
03500	0070		REAL AA, ALPHF, ALPHM, CPPAV, DN1, DRO, H, MDOTP, N10, RHO	',
03550	0071		+ RIR, STMGEN, TAU, TAUC, TF1, TM1, TTOT, VO, VOSS, Y	
03600	0072		INTEGER CS, EIG, F, IS, J, K, KF, LND, NK, NN, PJ, Q, RI, ZZ	
03650	0073		REAL ADTI(1510), ADTO(1510), DTF(1510), DTI(1510), DTM(1510),
03700	0074		+ DTO (1510), DTSG(1510), DTS(1510), RP(1510), TT (1510	1),
03750	0075		+ PT (1510), STMG(1510)	
03800	0076			
03850	0077	С	IN ADDITION TO THE ONES USED IN THE COMMON BLOCK AND EXPLAIN	ED
03900	0078	č	IN NERO, THE FOLLOWING VARIABLES ARE USED IN GALBA:	
	0079	č	BB IS THE SUMMATION OF THE 6 GROUPS OF DELAYED	
03950		č	PRECURSORS.	
04000	0080	c	DNI IS THE CHANGE IN REACTOR POWER FROM STEADY-STATE.	
04050	0081	C		
04100	0082	C		
04150	0083	C	SYSTEM.	1 M
04200	0084	С	DROIN IS A REACTIVITY STEP. IT IS ENTERED BY THE USER	114
04250	0085	С	NERO.	
04300	0086	С	DRO1 IS REACTIVITY STEP USED IN PROMPT-JUMP APPROXIMA-	
04350	0087	С	TION, AFTER THE REACTIVITY STEP PASSED FROM NERO	
04400	0088	С	IS ADJUSTED FOR FEEDBACK DURING THE PROMPT JUMP.	21
04450	0089	C	DRO2 IS THE DIFFERENCE BETWEEN DRO1 AND THE REACTIVITY	
04500	0090	С	STEP PASSED FROM NERO. USED IN COMPUTING THE	
04550	0091	C	PROMPT-JUMP APPROXIMATION.	
04600	0092	C	DROT IS THE DIFFERENCE BETWEEN DRO1 AND DRO2. IF	
04650	0093	C	IT IS SMALL ENOUGH, THE PJ APPROXIMATION IS	
04700	0094	C	CONSIDERED TO BE COMPUTED.	
04750	0095	C	DTFGT IS THE ESTIMATED CHANGE IN FUEL TEMPERATURE THAT	
04800	0096	C	OCCURS DURING ANY GIVEN INTERVAL OF 0.2 SECONDS.	
04850	0097	C	IT IS USED IN REACTIVITY CALCULATIONS. ITS PURPO	SE
04900	0098	C	IS TO PROVIDE SOME FUEL TEMPERATURE CHANGE DATA	
04950	0099	C	DURING THE 0.2 SECOND CYCLE THAT GALBA RUNS BEFOR	F
05000	0100	č	PASSING CONTROL ON TO OTHO.	
05050	0101	č	DTMGT IS ESTIMATED CHANGE IN MODERATOR TEMPERATURE THAT	
		č	OCCURS DURING ANY 0.2 SECOND CYCLE. IT IS USED F	OR
05100	0102	č	THE SAME REASON THAT DIFGT IS. AFTER THE 0.2 SECO	ND
05150	0103	c		NU
05200	0104	C	INTERVAL, DIFGT AND DIMGT BOTH ARE SET EQUAL TO	
05250	0105	C	ZERO, AND NEW VALUES FOR THE FUEL AND MODERATOR	
05300	0106	C	TEMPERATURE CHANGES ARE COMPUTED IN OTHO. WHAT	
05350	0107	С	THESE TWO VARIABLES DO IS PREVENT THE ABRUPT FUEL	
05400	0108	С	TEMPERATURE CHANGES (AND THEREBY, SUDDEN REACTIVIT	
05450	0109	C	AND POWER CHANGES) THAT WOULD OCCUR IF THE FUEL A	
05500	0110	С	MODERATOR TEMPERATURES WERE ALLOWED TO CHANGE ONL	
05550	0111	С	ONCE EVERY 0.2 SECONDS (THAT IS, EVERY TIME CONTR	OL
05600	0112	С	IS PASSED TO OTHO).	
05650	0113	С	DTMT IS THE SUM OF ALL DTM(K). USED IN THE INTEGRAL	
05700	0114	C	CONTROLLER OF THE CONTROL SYSTEM.	

IS PROMPT NEUTRON LIFETIME. IS THE 1X1 MATRIX FORMED BY MULTIPLYING THE 1X6 LK MATRIX AND THE 6X1 K MATRIX IN THE MATRIX DE-OUPLING ALGORITHM. IS USED TO COMPUTE ACTUAL COUPLING ALGORITHM. IS USED TO COMPUT REACTOR POWER FROM DECOUPLED VARIABLES IS THE TOTAL REACTOR POWER, AS COMPUTED IN THE PWRP.J PROMPT-JUMP APPROXIMATION. IS THE CHANGE IN REACTOR POWER, AS COMPUTED DURING THE PREVIOUS ITERATION. PWR1 IS THE DIFFERENCE BETWEEN CURRENT REACTOR POWER CHANGE AND PWR1. PWR2 IS THE 6-GROUP SUMMATION OF THE DELAYED NEUTRON DECAY CONSTANT TIMES THE CHANGE IN PRECURSOR SIG DENSITY. IS USED IN POINT-KINETICS EQUATIONS. IS ANALOGOUS TO SIG, ONLY IS USED IN THE PROMPT-JUMP APPROXIMATION. SIGP.J IS THE TOTAL ELAPSED TIME IN THE CURRENT SERIES OF ITERATIONS. WHEN IT EQUALS 0.1 SECONDS, GALBA CAUSES THE DECOUPLED ANALOGUE OF THE DELAYED-т NEUTRON PRECURSORS TO BE COMPUTED. IS THE TOTAL TIME ELAPSED IN THE CURRENT SERIES OF ITERATIONS. WHEN IT EQUALS 0.005, CONTROL IS PASSED TO THE SUBROUTINE OTHO. IS A VARIABLE THAT WHOSE MAGNITUDE GOVERNS THE TH х SIZE OF THE TIME STEP USED IN THE FIRST 0.2 SECONDS OF THE RUNNING OF GALBA. IS USED IN THE COMPUTATION OF IS EQUAL TC -1.0. DTFGT AND DTMGT. XX IS THE DELAYED-NEUTRON FRACTON, OF EACH GROUP. IS THE STEADY-STATE DELAYED PRECURSOR DENSITY. IS THE CHANGE IN DELAYED PRECURSOR DENSITY FROM IS THE DECAY CONSTANT OF EACH OF THE 6 DELAYED-B(6) ci0(6) DC1(6) LMB(6) NEUTRON GROUPS. THE STEADY STATE. THE FOLLOWING ARE VARIABLES USED IN MATRIX DECOUPLING: A(7,7) IS THE COEFFICIENT MATRIX OF THE COUPLED SYSTEM OF THE POINT-KINETICS EQUATIONS. IS INPUT INTO THE EIGENVALUE-COMPUTING SUBROUTINE EIGEN. THE JORDAN CANONICAL FORM OF THIS MATRIX IS A = MJQ, WHERE J IS THE DIAGONAL MATRIX CONSISTING OF THE EIGENVALUES OF A, Q IS THE FUNDAMENTAL MATRIX CONSISTING OF THE EIGENVECTORS OF A, AND M IS THE INVERSE OF Q. AI(7,7)IS A 7X7 MATRIX CONSISTING OF THE IMAGINARY PORTION OF THE FUNDAMENTAL MATRIX Q OF THE COEFFICIENT MATRIX A. FOR ANY COEFFICIENT MATRIX A THAT WILL BE ENCOUNTERED IN THIS PROGRAM, THERE ARE ONLY DESCRIPTION REAL EIGENVALUES AND EIGENVECTORS, AND ALL ELEMENTS OF AI(7,7) EQUAL ZERO. AR(7,7)IS THE FUNDAMENTAL EIGENVECTOR MATRIX OF THE A MATRIX. CORRESPONDS TO THE Q MATRIX MENTIONED EARLIER. BOTH THE AI(7,7) AND AR(7,7) MATRICES ARE OUTPUT OF THE PORTLIBRARY SUBROUTINE EIGEN. EVEN THOUGH THE VALUES OF ALL OF THE ELEMENTS OF OF AI(7,7) AND ALL OF THE OTHER IMAGINARY MATRICES

ARE ZERO, THE MATRICES MUST BE THUS DEFINED, AS

С

С

.

.

08750

	ZERO ENTRIES IN ALL OF THE POSITIONS OF THSES
	MATRICES.
BR(7,7)	IS A 7X7 IDENTITY MATRIX USED AS INPUT IN THE
	PORTLIBRARY SUBROUTINE CLINQ TO HELP INVERT THE
	AR(7,7), OR Q, MATRIX INTO THE INVERSE FUNDAMENTA
	EIGENVECTOR MATRIX M REFERRED TO EARLIER.
BI(7,7)	IS THE IMAGINARY COMPANION TO BR(7,7). ALL ITS
	ELEMENTS EQUAL ZERO.
B2	IS THE 1X1 B2 MATRIX CONSISTING OF THE COEFFICIEN
	OF THE FAST MODE SYSTEM OF DECOUPLED DIFFERENTIAL
	FOUNTIONS BECAUSE IT IS 1X1 IT IS FOUND TO THE
	OF THE COUPLED POINT-KINETICS EQUATIONS. THIS IS
	OF THE COUPLED POINT-KINETICS EQUATIONS. THIS IS
	THE FIGENVALUE THAT CORRESPONDS TO THE FAST MODE.
DI(6)	IS A CORRECTION MATRIX. IT IS 6X1 WHEN COMPUTING
,	THE L MATRIX, 1X6 WHEN COMPUTING THE K MATRIX.
	IT IS COMPUTED TO SERVE AS A CORRECTION TO THE
	OLD MATRICES L OR K. IT IS ADDED TO THE OLD
	MATRIX TO GENERATE A NEW ONE.
DY(7)	IS A 7X1 MATRIX REPRESENTING DECOUPLED VARIABLES
	CORRESPONDING TO EACH OF THE 7 VARIABLES SOLVED F
	IN THE 7X7 SYSTEM OF COUPLE POINT-KINETICS EQUA-
	TIONS (6 DELAYED-NEUTRON GROUPS PLUS PROMPT RE-
	SPONSE). IT REPRESENTS ALL OF THE VARIABLES THAT
	EXIST AFTER THE COUPLED SYSTEM OF POINT-KINETICS
	EQUATIONS IS DECOUPLED AND TRANSFORMED INTO THE
	DECOUPLED VARIABLES. THE FIRST SIX ARE THE ANAL-
	OGUES OF THE SIX DELAYED-NEUTRON GROUPS, WHILE TH
	SEVENTH IS THE ANALOGUE OF THE PROMPT RESPONSE.
DYIN(6.	18) IS THE DY(I) MATRIX (MINUS THE 7TH ELEMENT.
	WHICH IS FOR THE PROMPT RESPONSE), AS USED DURING
	DURING THE PROMPT JUMP. DURING THE PROMPT JUMP,
	TIME STEPS ARE OF VARIABLE. SIZE, AND THE DY(1)
	MATRIX IS DEFINED FREQUENTLY DURING THE FIRST
	0.2 SECONDS. THUS IT IS NECESSARY TO HAVE A
	2-DIMENSIONAL MATRIX THAT CAN KEEP TRACK OF
	WHICH DY(1) IS CURRENTLY OF INTEREST.
INT	IS A "HOLDING VARIABLE". WHEN CARRYNG OUT MULTI-
	PLICATION OPERATIONS IN THE MATRIX DECOUPLING
	ALGORITHM. IT IS USED TO STORE THE SUMS OF A ROW
	OF MULTIPLICATIONS. AFTER THIS SUM IS USED IN
	FURTHER OPERATIONS, IT IS SET EQUAL TO ZERO FOR
	REUSE LATER.
H2	IS THE TIME STEP USED FOR THE DECOUPLED ANALOGUES
	OF THE DELAYED-NEUTRON PRECURSORS. IT IS 200
	TIMES THE SIZE OF THE TIME STEP CURRENTLY IN
	USE FOR THE PROMPT RESPONSE.
H20(22)	IS A VARIABLE H2 TIME STEP USED ONLY DURING THE
	FIRST 0.2 SECONDS.
KK	IS A DUMMY VALUE USED TO ARRANGE THE EIGENVALUES (
	THE COEFFICINT MATRIX OF THE COUPLED POINT-
	KINETICS EQUATIONS IN ASCENDING ORDER OF THEIR
	ABSOLUTE VALUES.
KM(6)	IS THE 6X1 K MATRIX. IT AND THE L MATRIX ARE FIRST
Selfer and the	USED TO TRANSFORM THE COUPLED VARIABLES OF THE
	north an sharen share share share and the share the states of the

THE SUCCESSFUL APPLICATION OF THE PORTLIBRARY SUBROUTINES EIGEN AND CLINQ DEMAND AT LEAST ZERO ENTRIES IN ALL OF THE POSITIONS OF THSES

- L
- Т
- OR Ε
- OF
- ST

.

11450	0229	С		POINT-KINETICS EQUATIONS INTO THEIR DECOUPLED ANAL-
11500	0230	C		OGUES. THEN, AFTER SOLUTIONS FOR THE DECOUPLED VAR-
11550	0231	CC		IABLES ARE OBTAINED, ARE USED TO TRANSFORM THESE NEW VALUES FOR THE DECOUPLED VARIABLES INTO THEIR
11600 11650	0232	c		COUPLED OR "REAL WORLD" VARIABLES. IN PRACTICE.
11700	0234	C		THE ONLY "REAL WORLD" VARIABLE OF INTEREST IS REAC-
11750	0235	C		TOR POWER, AND IS THE ONLY DECOUPLED VARIABLE TO BE
11800	0236	CC		BACK-TRANSFORMED. ONLY THE STEADY-STATE, INITIAL VALUES OF THE COUPLED VARIABLES ARE TRANSFORMED
11850 11900	0237	c		INTO THEIR DECOUPLED ANALOGUES: THESE VALUES ARE
11950	0239	č		NEEDED TO SOLVE THE DECOUPLED DIFFERENTIAL
12000	0240	CC		EQUATIONS.
12050	0241	C	KL(6,6) IS THE 6X6 MATRIX FORMED BY MULTIPLYING THE K MATRIX TIMES THE L MATRIX. IT IS USED TO TRANSFORM
12100	0242	C		MATRIX TIMES THE L MATRIX. IT IS USED TO TRANSFORM THE INITIAL VALUES FOR THE SIX DELAYED-NEUTRON
12150	0243	C		GROUPS INTO THEIR DECOUPLED ANALOGUES.
12250	0245	C	LM(6)	IS THE 1X6 L MATRIX. IN ADDITION TO PERFORMING THE
12300	0246	C		FUNCTIONS DESCRIBED IN THE KM(6) NARRATIVE, THE
12350	0247	000		VALUES OF ITS ELEMENTS ARE ALSO USED TO COMPUTE THE B1 MATRIX. (THE B2 MATRIX IS SIMPLY THE EIGENVALUE
12400	0248	c		OF THE FAST MODE.) THE K MATRIX IN TURN IS DERIVED
12500	0250	000		BY SOLVING THE ALGEBRAIC RICCATI EQUATION.
12550	0251	С	N	THE ORDER OF THE MATRIX A. IS INPUT TO THE PORT-
12600	0252	C C	NB	LIBRARY SUBROUTINE EIGEN. IS THE NUMBER OF VARIABLES IN THE POINT-KINETICS
12650 12700	0253	c	ND	EQUATIONS (7). IS INPUT TO THE PORTLIBRARY SUB-
12750	0255	С		ROUTINE CLING.
12800	0256	C	NM	IS THE ROW DIMENSION OF THE MATRIX A(7). IS USED
12850	0257	CC	Q22	AS INPUT TO THE PORTLIBRARY SUBROUTINE EIGEN. IS THE 1X1 SUBMATRIX IN THE (2,2) POSITION
12900 12950	0258	C	422	OF THE FUNDAMENTAL EIGENVECTOR MATRIX, SPLIT
13000	0260	C		INTO 4 SUBMATRICES.
13050	0261	C	RIE	IS THE RESIDUAL ERROR MATRIX USED IN THE MATRIX
13100	0262	CC		DECOUPLING ALGORITHM. IT IS THE EUCLIDEAN NORM OF THE 6X1 (WHEN COMPUTING THE "L" MATRIX) RESIDUAL
13150 13200	0263	C		ERROR MATRIX, WHICH IS 1X6 WHEN COMPUTING THE "K"
13250	0265	CC		MATRIX.
13300	0266	С	RMT	IS THE SQUARE OF RIE.
13350	0267	C	RM(6)	IS THE RESIDUAL ERROR MATRIX (6X1 WHEN COMPUTING
13400	0268	CC		THE LM(6) MATRIX, 1X6 WHEN COMPUTING THE KM(6) MATRIX). IF ITS EUCLIDEAN NORM IS SMALL ENOUGH,
13500	0270	č		THEN THE LM(6) AND THE KM(6) MATRICES ARE
13550	0271	C		CONSIDERED TO HAVE CONVERGED TOWARD THEIR TRUE
13600	0272	000	VD/7 7	VALUES.)IS THE 7X7 INVERSE FUNDAMENTAL EIGENVECTOR MATRIX
13650 13700	0273	C	XR(1,1	OF THE COEFFICIENT MATRIX OF THE COUPLED POINT-
13750	0275	C		KINETICS EQUATIONS. ALSO KNOWN AS THE M MATRIX.
13800	0276	C		IT IS OUTPUT FROM THE PORTLIBRARY SUBROUTINE CLING.
13850	0277	С	XI(7,7)IS THE 7X7 MATRIX WHICH IS THE IMAGINARY COMPANION TO XR(7,7). THE VALUES OF ALL ITS ELEMENTS ARE
13900 13950	0278 0279	CC		EQUAL TO ZERO.
14000	0280	С	VAL	IS A HOLDING VARIABLE USED IN ARRANGING THE EIGEN-
14050	0281	C		VALUES OF THE COEFFICIENT MATRIX OF THE COUPLED
14100	0282	CC		POINT-KINETICS EQUATIONS IN ASCENDING ORDER OF THEIR ABSOLUTE VALUES.
14190	0283	c	VALP	IS A HOLDING VARIABLE USED IN ARRANGING THE EIGEN-
14250	0285	č		VALUES OF THE COEFFICIENT MATRIX OF THE COUPLED

.

$\begin{array}{c} 14300\\ 14300\\ 14450\\ 14450\\ 14450\\ 14450\\ 14450\\ 14450\\ 14450\\ 14450\\ 14450\\ 14450\\ 14450\\ 14450\\ 14450\\ 14450\\ 15050\\ 15150\\ 15500\\ 15500\\ 15500\\ 15550\\ 15$	0286 0287 0288 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0300 0301 0302 0303 0304 0305 0306 0307 0308 0309 0310 0311 0312 0314 0315 0316 0317 0318 0320 0321 0322 0323 0324 0325 0326 0327 0328		<pre>POINT-KINETICS EQUATIONS IN ASCENDING ORDER OF THEIR ABSOLUTE VALUES. FOR A FURTHER EXPLANATION OF VAL & VALP, SEE THE COMMENTS IMMEDIATELY PRE- CEEDING DO LOOP 100. VK IS AN INTEGER WHOSE VALUE DURING THE FIRST 0.2 SECONDS OF OPERATION DETERMINES WHETHER A DY(1) MATRIX IS COMPUTED OR NOT. VL IS THE SAME AS VK, BUT IS USED AT SLIGHTLY LATER TIMES. WR(7) IS THE TX1 MATRIX CONSISTING OF THE EIGENVALUES OF THE A(7,7) MATRIX. IS OUTPUT OF THE PORTLIBRARY SUBROUTINE EICEN. WI(7) IS THE IMAGINARY COMANION TO WR(7). THE VALUES OF ALL ITS ELEMENTS ARE EQUAL TO ZERO. Z(7,7) IS THE FUNDAMENTAL EIGE'VECTOR MATRIX OF THE COEF- FICIENT MATRIX OF THE COUPLED POINT-KINETICS EQUA- TIONS. IT IS OUTPUT FORM THE PORTLIBRARY SUBROU- TINE EIGEN, AND IS IDENTICAL TO THE AR(7,7) MATRIX. (SINCE THE CLING SUBROUTINE DEMANDS THAT ANY MATRIX TO BE INVERTED BE CALLED THE AR MATRIX, IT WAS NECESSARY TO "RELABEL" THE Z(7,7) MATRIX, WAS NECESSARY TO "RELABEL" THE Z(7,7) MATRIX BY CREA- TING THE AR(7,7) MATRIX WHICH IS EXACTLY EQUAL TO IT. IN THIS PROGRAM, THE FUNDAMENTAL EIGENVECTOR MATRIX IS INVERTED BE CALLED THE AR MATRIX BY CREA- TING THE AR(7,7) MATRIX WHICH IS EXACTLY EQUAL TO IT. IN THIS PROGRAM, THE FUNDAMENTAL EIGENVECTOR MATRIX IS INVERTED BECAUSE THIS MAKES THE INITIAL APPROXIMATION TO THE LM(6) MATRIX EASIER TO COMPUTE.) REAL DRIN, DRC, DROIN, DROD, DRODSO, DROTSO, DIFGT, + DIMGT, DIMGT, DIMT, LMBD, PIG, PTO, PWRPJ, + PWRRI, PWR2, SIG, SIGPJ, T, TTG, X REAL DROR, Q22 INTEGER I, INTI, INT2, INT3, INT4, INT5, INT6, KK, M, N, NB, + NM, SV, VK, VL REAL*8 A (7,7), AI(7,7), AR(7,7), BI(7,7), BI(6,6), # UI(6), DY(7), KM(6), KL(6,6), LM(6), M3I(5), + Q21(7), RM(6), SS(7), XI(7,7), SR(7,7), WI(14), + KREAL*8 DYING, 13, PAO(22) REAL ADJF, ADJM, DRO1, DRO2, DROT, SSD, SSDN, SDO, TH DIMENSION LPWR(7), VALP, XX REAL ADJF, ADJM, DRO1, DRO2, DROT, SSD, SSDN, TH, LL, + FORT(2), FFTY(2), SIXT(2), DNIG(22), STM(22)</pre>
16550 16600 16650	0331 0332 0333	000	HERE, INITIALIZATIONS TAKE PLACE, AND ONLY DURING THE FIRST 0.2 SECONDS. ALSO, IF THERE IS TO BE NO KINETICS, CONTROL IS PASSED IMMEDIATELY TO OTHO.
16700 16750	0334		IF (NK .EQ. 1) GO TO 480
16800 16850 16900	0336 0337 0338		IF (Y .EQ. 1.0) TTG = 0.0 IF (Y .NE. 1.0) GO TO 50
16950 17000	0339 0340		ADJF = 1.0
17050 17100	0341 0342		$\begin{array}{rcl} ADJM &=& 1.0\\ BB &=& 0.0 \end{array}$

÷

*

17150 17250 17250 17300 17350 17400 17450 17550 17650 17650 17650 17650 17750 17750 17750 17750 17750 17750 17750 17750 17850 17750 17950 17950 18050 18100 18250 18250 18350 18450 18450	$0343 \\ 0344 \\ 0345 \\ 0346 \\ 0347 \\ 0348 \\ 0349 \\ 0351 \\ 0352 \\ 0351 \\ 0355 \\ 0355 \\ 0355 \\ 0355 \\ 0357 \\ 0355 \\ 0357 \\ 0361 \\ 0363 \\ 0364 \\ 0366 \\ 0366 \\ 0366 \\ 0368 \\ 0369 \\ 0371 \\ 0369 \\ 0371 \\ 0368 \\ 0369 \\ 0371 \\ 0368 \\ 0369 \\ 0371 \\ 0368 \\ 0369 \\ 0371 \\ 0368 \\ 0369 \\ 0371 \\ 0368 \\ 0369 \\ 0371 \\ 0368 \\ 0369 \\ 0377 \\ 0368 \\ 0369 \\ 0377 \\ 0368 \\ 0369 \\ 0377 \\ 0368 \\ 0369 \\ 0377 \\ 0368 \\ 0369 \\ 0377 \\ 0368 \\ 0369 \\ 0377 \\ 0368 \\ 0369 \\ 0377 \\ 0368 \\ 0369 \\ 0377 \\ 0368 \\ 0369 \\ 0377 \\ 0368 \\ 0369 \\ 0377 \\ 0368 \\ 0369 \\ 0377 \\ 0368 \\ 0369 \\ 0377 \\ 0368 \\ 0369 \\ 0377 \\ 0368 \\ 0369 \\ 0377 \\ 0368 \\ 0369 \\ 0377 \\ 0368 \\ 0369 \\ 0377 \\ 0368 \\ 0369 \\ 0377 \\ 0368 \\ 0369 \\ 0377 \\ 0368 \\ 0369 \\ 0377 \\ 0368 \\ 0368 \\ 0369 \\ 0377 \\ 0368 \\ 0369 \\ 0377 \\ 0368 \\ 0369 \\ 0377 \\ 0368 \\ 0369 \\ 0377 \\ 0368 \\ 0369 \\ 0377 \\ 0368 \\ 0369 \\ 0377 \\ 0368 \\ 0369 \\ 0377 \\ 0368 \\ 0369 \\ 0377 \\ 0368 \\ 0369 \\ 0377 \\ 0368 \\ 0369 \\ 0377 \\ 0368 \\ 0369 \\ 0377 \\ 0368 \\ 0369 \\ 0377 \\ 0368 \\ 0369 \\ 0377 \\ 0368 \\ 0369 \\ 0377 \\ 0368 \\ 0369 \\ 0377 \\ 0377 \\ 0368 \\ 0368 \\ 0369 \\ 0377 \\ 0377 \\ 0368 \\ 0368 \\ 0369 \\ 0377 \\ 0377 \\ 0368 \\ 0368 \\ 0369 \\ 0377 \\ 0368 \\ 0368 \\ 0368 \\ 0369 \\ 0377 \\ 0368 \\ $	×	DNI = 0.0 DR0IN = DR0 DR0R = DR0 DRC = 0.0 DTFGT = 0.0 DTMGTT = 0.0 DTMGTT = 0.0 DTMT = 0.0 L = 0.0001 PTG = NI0 + DN1 PTG = NI0 + DN1 PTG = PTG PWRPJ = N10 PWRRI = 0.0 SIG = 0.0 SIG = 0.0 TH = 0.0 TH = 0.0 TH = 0.0 TH = 0.0 VK = 1 VL = 2 X = 1.0 XX = -1.0 A(7,7) = (RH0 - BB) / L
18550 18600 18650 18700	0371 0372 0373 0374	CCC	HERE, DEPENDING ON WHICH ISOTOPE WAS SELECTED IN NERO, THE DELAYED-NEUTRON FRACTIONS AND DECAY CONSTANTS FOR EACH OF THE SIX DELAYED-NEUTRON GROUPS IS SELECTED.
18750 18800 18850 18950 19000 19050 19050 19150 19250 19350 19450 19450 19550 19650 19650 19650 19750 19850 19850 19850 19900 19950	0375 0376 0377 0378 0381 0382 0383 0384 0385 0384 0385 0386 0388 0388 0389 03991 0392 0393 0394 0395 0396 0397 0398 0399		$\begin{array}{llllllllllllllllllllllllllllllllllll$

20050 04 20100 04 20150 04 20200 04 20250 04 20300 04 20350 04 20400 04 20400 04 20450 04 20550 04 20550 04 20550 04 20550 04	12	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
20750 04 20800 04	14 C 15 C 16 C	HERE, THE COEFFICIENT MATRIX FOR THE COUPLED POINT-KINETICS EQUATIONS IS DEFINED. ALSO, SOME OF THE INITIALIZATONS FOR VARIABLES USED IN MATRIX DECOUPLING ARE MADE HERE.
20900 04 20950 04 21000 04 21050 04	17 18 19 20 21 22	$ \begin{array}{rcl} N & = & 7 \\ NB & = & 7 \\ NM & = & 7 \\ RIE & = & 0.0 \\ RMT & = & 0.0 \end{array} $
21300 04 21350 04	24 25 26 27	$\begin{array}{rcl} D0 & 10 & 1 &= & 1,6 \\ A(1,1) &= & 0.0 \\ A(2,1) &= & 0.0 \\ A(3,1) &= & 0.0 \\ A(4,1) &= & 0.0 \\ A(4,1) &= & 0.0 \end{array}$
	31 32	$\begin{array}{llllllllllllllllllllllllllllllllllll$
21700 04 21750 04 21800 04 21850 04 21850 04 21900 04	34 35 36 37 10	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
21950 04 22000 04 22050 04 22100 04	39 40	DO 20 J = 1,7 AI(1,J) = 0.0 BI(1,J) = 0.0 BR(1,J) = 0.0
22200 04 22250 04 22300 04 22350 04	44 45 46 47 30 48	BR(1,1) = 1.0DY(1) = 0.0DY1N(1,1) = 0.0
22450 04 22500 04 22550 04 22600 04	49 50 C 51 C 52 53	HERE, INITIAL VALUES FOR THE DELAYED-NEUTRON FRACTIONS ARE DERIVED. ALSO, THE DELAYED-NEUTRON FRACTIONS ARE SUMMED. DO 40 I = 1.6
22700 04 22750 04	54 55 56	CIO(I)= N10 * B(I) / (L * LMB(I)) BB = BB + B(I) DCI(I)= 0.0

.

.

22850	0457	40	CONTINUE
22900	0458	40	SSD = 2.0 * DRO / BB
	0459		SSDO = 2.0 * DRO / BB
22950			
23000	0460		
23050	0461	FO	CONTINUE
23100	0462	50	CONTINUE
23150	0463		HERE, REACTIVITY EFFECTS DUE TO FEEDBACK AND THE REACTOR
23200	0464	C	
23250	0465	C	CONTROL SYSTEM ARE COMPUTED.
23300	0466		
23350	0467		IF ((ZZ .EQ. 1) .AND. (K .LE. 29.0)) GO TO 480
23400	0468		DTMT = DTM(K-1) + DTMT
23450	0469		IF ((X .NE. 1.0) .AND. (CS .EQ. 2))
23500	0470		+ DRO = ALPHF * DTF(K-1) + ALPHM * DTM(K-1) + DROIN +
23550	0471		+ (RIR * TTG)
23600	0472	60	- IF ((X .NE. 1.0) .AND. (CS .EQ. 1))
23650	0473		+ DRO = ALPHF * DTF(K-1) + ALPHM * DTM(K-1) + DROIN +
23700	0474		+ $(RIR + TTG) + DRC$
23750	0475		DRC = $0.2 * (AA * (DTM(K-1) + (0.2 * DTMT / TAU)) -$
23800	0476		+ $(DRC / TAUC)) + DRC$
23850	0477		IF ((X .NE. 1.0) .AND. (CS .EQ. 2) .AND. (ZZ .EQ. 1))
23900	0478		+ DRO = ALPHF * DTF(K-1) + ALPHM * DTM(K-1)
	0479		IF ((X .NE. 1.0) .AND. (CS .EQ. 1) .AND. (ZZ .EQ. 1))
23950			+ DRO = ALPHF * DTF(K-1) + ALPHM * DTM(K-1) + DRC
24000	0480		DRC = 0.2 * (AA * (DTM(K-1) + (0.2 * DTMT / TAU)) -
24050	0481		+ (DRC / TAUC)) + DRC
24100	0482		
24150	0483		
24200	0484	-	
24250	0485	C	USDS THE MATCHY DECOUPLING ALCORITHM OCCUPS
24300	0486	C	HERE, THE MATRIX DECOUPLING ALGORITHM OCCURS. IF IT IS NOT
24350	0487	С	SELECTED, CONTROL IMMEDIATELY JUMPS TO STATEMENT 330. IF IT IS,
24400	0488	С	IT STARTS HERE. AS GALBA PROCEEDS THROUGH THIS ALGORITHM, AT
24450	0489	С	VARIOUS PLACES COMMENT STATEMENTS WILL BE INSERTED TO EXPLAIN
24500	0490	С	WHAT IS GOING ON.
24550	0491	С	
24600	0492	70	IF (EIG .EQ. 2) GO TO 330
24650	0493	С	
24700	0494	С	HERE, THE (7,7)TH ELEMENT OF THE COEFFICIENT MATRIX OF THE
24750	0495	С	COUPLED POINT-KINETICS EQUATIONS IS DEFINED. AS IT IS REACTIVITY
24800	0496	C	DEPENDENT, IT IS THE ONLY PART OF THIS MATRIX THAT VARIES. THE
24850	0497	C	OTHER ELEMENTS OF THIS MATRIX ARE REDEFINED, TOO, BUT ALWAYS WITH
24900	0498	C	THE SAME VALUES. THE REASON THEY NEED TO BE REDEFINED IS THAT
24950	0499	C	EXECUTION OF THE PORTLIBRARY SUBROUTINE EIGEN, WHICH TAKES PLACE
25000	0500	C	NEXT, OVERWRITES OR CANCELS ALL OF ITS INPUT, SO IT ALL NEEDS TO
25050	0501	C	BE RÉDEFINED PRIOR TO THE NEXT TIME EIGEN IS CALLED, EVEN IF
25100	0502	C	DOES NOT CHANGE. THE FIRST TIME THE MATRIX DECOUPLING ALGORITHM IS
25150	0503	C	CALLED, HOWEVER, REACTIVITY IS CONSIDERED TO BE ZERO. THIS IS TO
25200	0504	č	CALCULATE THE INITIAL VALUES FOR THE ANALOGUES OF THE VARIABLES
25250	0505	č	OF THE DELAYED-NEUTRON RESPONSE AND OF THE PROMPT RESPONSE. AS
25300	0506	č	THIS PROGRAM IS NOW RUN ONLY ONCE, HOWEVER, NONE OF THE ABOVE NOW
25350	0507	č	APPLIES. THIS INFORMATION IS INCLUDED FOR THOSE, WHO MAY WISH TO
25400	0508	č	ALTER GALBA IN THE FUTURE SUCH THAT MATRIX DECOUPLING COULD BE
25450	0509	č	CALLED MORE THAN ONCE DURING A GIVEN RUN. ALSO, THE K MATRIX IS
25500	0510	c	INITIALLY DEFINED IN TERMS OF THE A MATRIX, SO ITS VALUES WOULD
25550	0511	č	NEED TO BE REDEFINED ANYWAY.
25600	0512	č	
25650	0513	C	IF (Y .NE. 1.0) GO TO 330
27070	0,10		11 (1 that ito) bo io 500

.

HERE, THE PORTLIBRARY SUBROUTINE "EIGEN" IS CALLED. ITS PURPOSE IS TO TAKE THE COEFFICIENT MATRIX OF THE COUPLED SYSTEM C 0516 č 0517 OF POINT-KINETICS EQUATIONS AND DERIVE ITS EIGENVALUES AND C 0518 EIGENVECTORS. C 0519 0520 C CALL DEIGEN (NM. N. A. WR, WI, Z) 0521 С 0522 HERE, THE REMAINING ELEMENTS OF THE COEFFICIENT MATRIX OF THE THE SYSTEM OF COUPLED POINT-KINETICS EQUATIONS ARE REDEFINED, DUE TO THEIR HAVING BEEN OVERWRITTEN DURING THE CALLING OF "EIGEN", C 0523 0524 0525 C 0526 C WHICH TOOK PLACE JUST PREVIOUSLY. C 0527 DO 90 I = 1,6 0528 0.0 A(1,1) = 0529 A(2,1) = 0530 0.0 A(3,1) 0531 = 0.0 = 0.0 0532 A(4,1) A(5,1) = 0.0 0533 A(6,1) = 0.0 0534 = -LMB(1)0535 A(1,1) A(7,1) = LMB(1)0536 B(1) / L 0537 A(1,7) = 90 CONTINUE 0538 0.0 = 0539 RIE 0540 С HERE, THE EIGENVALUES THAT WERE JUST DERIVED FROM "EIGEN" ARE 0541 С REARRANGED, IN ASCENDING ORDER OF THEIR ABSOLUTE VALUES. THIS IS 0542 C NECESSARY BECAUSE THE MATRIX DECOUPLING ALGORITHM DEMANDS THAT THE С 0543 FUNDAMENTAL EIGENVECTOR MATRIX DECOUPLING ALGORITHM DEMANDS THAT THE FUNDAMENTAL EIGENVECTOR MATRIX CORRESPOND TO A DIAGONAL EIGENVALUE MATRIX IN WHICH THIS HAS BEEN DONE, BUT "EIGEN" DOES NOT DO THIS. FIRST, THE SQUARE ROOTS OF THE SQUARES OF THE EIGENVALUES ARE DERIVED. THIS WILL RESULT IN ALL POSITIVE VALUES ("DO" LOOP 100). THEN EACH EIGEN VALUE IS EXAMINED AS DELIVERED FROM "EIGEN". IT IS ASSUMED THAT ANY EIGENVALUE EXAMINED IS THE SMALLEST OF THE LOT. С 0544 C 0545 C 0546 C 0547 CC 0548 IS ASSUMED THAT ANY EIGENVALUE EXAMINED IS THE SMALLEST OF THE LOT. THE FIRST EIGENVALUE EXAMENED IS ASSIGNED THE VARIABLE NAME "VAL". ANOTHER VARIABLE, "VALP", IS SET EQUAL TO IT. THEN THE EIGENVALUE IS EXAMINED AGAINST ALL THE OTHERS. AS LONG AS IT IS SMALLER THAN ANY OF THEM, THE ASSUMPTION IS CONSIDERED TO HOLD UP, AND THE EIGENVALUE IS THEN COMPARED TO THE NEXT ONE. (THIS TAKES PLACE IN "DO" LOOP 110, WHICH IS NESTED IN 130.) IF IT IS LARGER THAN THE NEW EIGENVALUE BEING EXAMINED, THE NEW EIGENVALUE THEN BECOMES THE "NEW" POSSIBLY SMALLEST EIGENVALUE, AND "VALP" IS SET EQUAL TO IT. IF "VALP" IS SMALLER THAN "VAL", THEN "VAL" IS SET EQUAL TO "VALP". THROUGH THIS MEANS, "VAL" IS SET, AFTER 7 ITERATIONS, EQUAL TO THE SMALLEST OF THE EIGENVALUES. SINCE THE VARIABLE "KK" IS SET EQUAL TO "J" ONLY WHEN "VALP" IS LESS THAN "VAL", WHERE "J" IS THE SUB-SCRIPT IN THE "DO" LOOP OF THE EIGENVALUE BEING COMPARED AT THE MOMENT. NOT ONLY IS THE ABSOLUTELY SMALLEST EIGENVALUE IDENTIFIED, 0549 0550 C C 0551 0552 C 0553 CCCC 0554 0555 C 0556 0557 C 0558 CCC 0559 0560 C 0561 0562 C MOMENT, NOT ONLY IS THE ABSOLUTELY SMALLEST EIGENVALUE IDENTIFIED, BUT SO IS ITS EIGENVECTOR. THEN, IN "DO" LOOP 120, THIS EIG-VECCTOR IS PLACED IN THE LEFTMOST COLUMN IN THE FUNDAMENTAL EIGEN-VECTOR MATRIX, WHERE IT WOULD BELONG IN ORDER TO CORRESPOND TO THE POSITION IN THE DIAGONAL EIGENVALUE MATRIX GIVEN TO THE SMALLEST EIGENVALUE. THE CONTINUES WITH ALL FLOEDWALUES THE FLOED 0000 0563 0564 0565 0566 0567 C C THIS CONTINUES UNTIL ALL EIGENVALUES AND THE EIGEN-0568 EIGENVALUE. 0569 C VECTORS ASSOCIATED WITH THEM ARE PLACED IN ASCENDING ORDER OF 0570 C THEIR ABSOLUTE VALUES.

= (RHO - BB) / L A(7.7)

80

C

25700

25750

25800

25850

25900

25950

26000

26050

26100

26150

26200

26250

26300

26350

26400

26450

26500

26550

26600

26650

26700

26750

26800

26850

26900

26950

27000

27050

27100

27150

27200

27250

27300

27350

27400

27450

27500

27550

27600

27650

27700 27750

27800

27850 27900

27950

28000

28050

28100

28150

28200

28250

28300

28350

28400

28450

28500

28550	0571	С
28600	0572	DO 100 I = 1,7
28650	0573	VAL = WR(1) ## 2.0
28700	0574	WR(1) = DSQRT(VAL)
28750	0575	100 CONTINUE
28800	0576	DO 130 $l = 1,7$
28850	0577	кк = 1
28900	0578	VAL = WR(1)
28950	0579	VALP = VAL
29000	0580	DO 110 J = 1,7
29050	0581	IF (WR(I) .LE. WR(J)) GO TO 110
29100	0582	IF(WR(I), GT, WR(J)) VALP = WR(J)
29150	0583	IF (VALP .LT. VAL) KK = J
29200	0584	IF (VALP .LT. VAL) VAL = VALP
29250	0585	110 CONTINUE
29300	0586	$IF(KK,NE,I) \qquad WR(KK) = WR(I)$
29350	0587	DO 120 J = 1,7
29400	0588	AR(J, I) = Z(J, KK)
29450	0589	Z(J,KK) = Z(J,I)
29500	0590	120 CONTINUE
29550	0591	WR(1) = VAL
29600	0592	130 CONTINUÈ
29650	0593	C
29700	0594	C HERE, THE B2 MATRIX IS DEFINED. BY A HAPPY STROKE, SINCE THE
29750	0595	C B2 MATRIX IS 1X1. IT IS PRECISELY EQUAL TO THE EIGENVALUE CORRES-
29800	0596	C PONDING TO THE FAST MODE. THE NEGATIVE SIGN IS NECESSARY BECAUSE
29850	0597	C ALL THE EIGENVALUES OF THE COEFFICIENT MATRIX OF THE COUPLED POINT-
29900	0598	C KINETICS EQUATIONS ARE NEGATIVE. BUT THEY WERE ALL CHANGED INTO
29950	0599	C POSITIVE QUANTITIES WHEN THEY WERE REARRANGED INTO ASCENDING ORDER
30000	0600	C OF THEIR ABSOLUTE VALUES.
30050	0601	c
30100	0602	B2 = -WR(7)
30150	0603	c
30200	0604	C HERE. THE FUNDAMENTAL EIGENVECTOR MATRIX IS INVERTED VIA THE
30250	0605	C PORTLIBRARY SUBROUTINE CLINQ. THE INVERSE MATRIX IS THE XR MATRIX,
30300	0606	C WHICH IS 7X7. A FIRST APPROXIMATION FOR THE LM(1) MATRIX IS THEN
30350	0607	C DERIVED BY DIVIDING THE COLUMN MATRIX IN THE 7TH COLUMN, FIRST SIX
30400	0608	C ROWS, BY THE ELEMENT IN THE (7,7)TH POSITION IN THE XR MATRIX.
30450	0609	c
30500	0610	IF (K .GE. 10) GO TO 140
30550	0611	CALL DCLINQ (N. AR, AI, BR, BI, NB, XR, XI)
30600	0612	DO 140 I = 1,6
30650	0613	LM(1) = XR(7,1) / XR(7,7)
30700	0614	140 CONTINUE
30750	0615	150 INT = 0.0
30800		
30850	0616	c
	0617	C HERE USING THE BEST VALUE FOR LM(1), THE RESIDUAL ERROR
30900	0617 0618	C HERE USING THE BEST VALUE FOR LM(1), THE RESIDUAL ERROR C MATRIX IS COMPUTED.
30950	0617 0618 0619	C HERE USING THE BEST VALUE FOR LM(1), THE RESIDUAL ERROR C MATRIX IS COMPUTED. C
30950 31000	0617 0618 0619 0620	C HERE USING THE BEST VALUE FOR LM(1), THE RESIDUAL ERROR C MATRIX IS COMPUTED. C DO 160 I = 1,6
30950 31000 31050	0617 0618 0619 0620 0621	C HERE USING THE BEST VALUE FOR LM(1), THE RESIDUAL ERROR C MATRIX IS COMPUTED. C DO 160 I = 1,6 RM(I) = LMB(I) - (B2 * LM(1)) - (LM(1) * LMB(1))
30950 31000 31050 31100	0617 0618 0619 0620 0621 0622	C HERE USING THE BEST VALUE FOR LM(1), THE RESIDUAL ERROR C MATRIX IS COMPUTED. C DO 160 I = 1,6 RM(1) = LMB(1) - (B2 * LM(1)) - (LM(1) * LMB(1)) 160 CONTINUE
30950 31000 31050 31100 31150	0617 0618 0619 0620 0621 0622 0623	C HERE USING THE BEST VALUE FOR LM(1), THE RESIDUAL ERROR C MATRIX IS COMPUTED. C DO 160 I = 1,6 RM(1) = LMB(1) - (B2 * LM(1)) - (LM(1) * LMB(1)) 160 CONTINUE DO 170 I = 1,6
30950 31000 31050 31100 31150 31200	0617 0618 0619 0620 0621 0622 0623 0624	C HERE USING THE BEST VALUE FOR LM(1), THE RESIDUAL ERROR C MATRIX IS COMPUTED. C DO 160 I = 1,6 RM(I) = LMB(I) - (B2 * LM(I)) - (LM(I') * LMB(I)) 160 CONTINUE DO 170 I = 1,6 RMT = ((PM(I)) ** 2.0) + RMT
30950 31000 31050 31100 31150 31200 31250	0617 0618 0619 0620 0621 0622 0623 0624 0625	C HERE USING THE BEST VALUE FOR LM(1), THE RESIDUAL ERROR C MATRIX IS COMPUTED. C DO 160 I = 1,6 RM(I) = LMB(I) - (B2 * LM(I)) - (LM(I') * LMB(I)) 160 CONTINUE DO 170 I = 1,6 RMT = ((PM(I)) ** 2.0) + RMT 170 CONTINUE
30950 31000 31050 31100 31150 31200	0617 0618 0619 0620 0621 0622 0623 0624	C HERE USING THE BEST VALUE FOR LM(1), THE RESIDUAL ERROR C MATRIX IS COMPUTED. C DO 160 I = 1,6 RM(I) = LMB(I) - (B2 * LM(I)) - (LM(I') * LMB(I)) 160 CONTINUE DO 170 I = 1,6 RMT = ((PM(I)) ** 2.0) + RMT

C IF THE EUCLIDEAN NORM OF THE RESIDUAL ERROR MATRIX (WHICH WHAT "RIE" IS), IS SMALLER THAN A CERTAIN VALUE, THE PROGRAM WILL PASS CONTROL ON TO STATEMENT 190. THE LM(I) MATRIX AT THIS POINT THE LM(I) MATRIX AT THIS POINT WILL BE CONSIDERED TO BE WELL-DEFINED. С IF (RIE .LE. 1.0E-10) GO TO 190 С SINCE THE LM(I) MATRIX IS NOT WELL-DEFINED AT THIS POINT, A CORRECTION MATRIX DI(I) (WHICH IS 6X1) IS COMPUTED AND ADDED THE LM(I) MATRIX. THEN CONTROL IS PASSED TO STATEMENT 150, AND IT IS THEN DETERMINED IF THIS STATEMENT IS WELL-DEFINED. C C DO 180 I = 1,6 RM(1) / B2 LM(1) + DI(1) = D1(1) LM(1)= CONTINUÈ GO TO 150 RIF = 0.0 С SINCE THE B1 MATRIX IS DEFINED ONLY IN TERMS OF THE LM(1) C MATRIX AND THE COEFFICIENT MATRIX OF THE COUPLED POINT-KINETICS С EQUATIONS, THIS IS WHERE IT IS COMPUTED. THE KM(I) MATRIX IS NOT NEEDED HERE, AND WILL BE USED ONLY AT THE END, WHEN IT IS NECESSARY TO CONVERT THE SOLUTION FOR THE DECOUPLED VARIABLES INTO ACTUAL REACTOR POWER. ALSO, FOR PURPOSES OF COMPUTING THE KM(I) MATRIX, č C С С AT THIS POINT A RESIDUAL ERROR MATRIX IS COMPUTED. IF ITS EUCLI-DEAN NORM IS SMALL ENOUGH (WHICH ISN'T LIKELY AT FIRST), THEN ALL OF THE ELEMENTS OF THE KM(I) MATRIX WILL EQUAL ZERO. OTHERWISE, SUCCESSIVE ITERATIONS OF A CORRECTION MATRIX WILL HAVE TO LEAD TO C CCC С A CORRECT KM(1) MATRIX. C DO 210 I = 1,6 DO 200 J = 1,6 = (B(J) / L) * = XX * INT INT LM(1) B1(J,I) = B1(1,J) IF (1 . EQ. J) = -LMB(I) - INTCONTINUE = -B(1) / LRM(1) CONTINUE INT = 0.0 DO 230 I = 1,6RMT = RMT + ((RM(1)) *** 2.0) CONTINUE RIE = SQRT (RMT) RMT = 0.0 C HERE, IF THE EUCLIDEAN NORM OF THE RESIDUAL ERROR MATRIX IS SMALL ENOUGH, CONTROL WILL PASS ON TO STATEMENT 270. IF NOT, TH SERIES OF CORRECTION MATRICES WILL HAVE TO BE COMPUTED. CC IF NOT, THE С C IF (RIE .LE. 1.0E-10) GO TO 270 DO 240 I = 1,6 RM(1) / B2 DI(1) = KM(1) + DI(1)KM(1) = CONTINUÈ 0.0 INT =

34250 0685 00000 HERE, THE CORRECTION MATRIX DI(1) MATRIX IS COMPUTED. I THEN ADDED TO THE MOST RECENT VERSION OF THE KM(1) MATRIX. THE RESIDUAL ERROR MATRIX ASSOCIATED WITH THIS IMPROVED KM(1) 34300 IT 0686 34350 0687 34400 0688 MATRIX IS COMPUTED, AND THE CONTROL SHIFTS BACK TO STATEMENT 220. 34450 0689 0690 С 34500 0691 $DO \ 260 \ I = 1,6$ 34550 DO 250 J = 1,60692 34600 INT = B1(I,J) + KM(J) + INT0693 34650 250 CONTINUE 34700 0694 =-(KM(1) # B2) + INT - (B(1) / L)RM(1) 34750 0695 0.0 34800 0696 INT = 34850 0697 260 CONTINUE 0698 GO TO 220 34900 0699 RIE 0.0 270 = 34950 C 35000 0700 HERE, INITIALIZATIONS OF THE DECOUPLED ANALOGUES FOR THE VARIABLES OF THE DELAYED-NEUTRON RESPONSE AND THE PROMPT RESPONSE 35050 0701 35100 0702 CCC TAKE PLACE. 35150 0703 35200 0704 CONTINUE 0705 35250 DO 290 I = 1,635300 0706 DO 280 J = 1,6 35350 0707 35400 0708 KL(1,J) =KM(1) * LM(J) 35450 0709 280 CONTINUE 35500 0710 KL(1,1) = KL(1,1) + 1.0CONTINUE 0711 290 35550 D0 310 I = 1,635600 0712 35650 0713 $DO \ 300 \ J = 1,6$ KL(1,J) # CIO(J) + INT 35700 0714 INT = 0715 35750 300 CONTINUE SS(1) 0716 = (KM(1))* N10) + INT 35800 0.0 35850 0717 INT = 35900 0718 310 CONTINUE 35950 0719 DO 320 I = 1,6 LM(1) * CIO(1) + INT 0720 INT = 36000 0721 320 CONTINUE 36050 0722 SS(7) N10 + INT 36100 = 36150 0723 INT = 0.0 36200 0724 DO 325 1 = 1,6 0725 36250 LK = LM(1) + KM(1) + LK0726 36300 325 CONTINUE + 1.0 36350 LK = LK 36400 0728 C HERE, THE SIZE OF THE TIME STEPS FOR THE PROMPT-JUMP APPROX-AND THE RAMP-INPUT MODEL IS DEFINED. ALSO, IF THE PJ MODEL 36450 0729 C 36500 0730 C ATION AND IS SELECTED, CONTROL IS PASSED ON TO STATEMENT 390. CC 36550 0731 36600 0732 36650 0733 36700 0734 36750 0735 (PJ .EQ. H = 0.001330 1 F 1) 36800 0736 IF (RI .EQ. H = 0.001GO TO 390 1) 0737 0738 (PJ 36850 1 F .EQ. 1) 36900 36950 0739 37000 0740 С 37050 0741 C GALBA SOLVES THE POINT-KINETICS EQUATIONS. SINCE THEY ARE

37100 37150 37200 37250 37300 37350 37400 37450 37500 37550	0742 0743 0744 0745 0746 0747 0748 0749 0750 0751	C COUPLED EQUATIONS, ANY NUMERICAL SOLUTION - WHICH AFTER ALL IS WHAT GALBA DOES - IS VALID ONLY ON TIME INTERVALS IN WHICH NEITHER N- TRON (REACTOR POWER) DENSITY NOR THE DELAYED PRECURSOR DENSITY VARIES GREATLY. HOWEVER, DURING THE PROMPT JUMP, BOTH DO VARY GREATLY. THE "WAY AROUND THIS" IS TO MAKE THE TIME STEPS ARBITRAR- ILY SMALL UNTIL THE PERIOD OF THE PROMPT JUMP IS OVER. THIS WHAT GALBA ACTUALLY DOES. THE TIME STEPS START AOUT BEING EQUAL 1 MICROSECOND. BY THE TIME 1 MILLISECOND HAS PASSED, THE TIME STEP C ALSO EQUAL 1 MILLISECOND, WHERE IT REMAINS FOR THE DURATION OF THE C RUN. X IS A NUMBER THAT CAUSES THE TIME STEPS TO ENLARGE THEM-
37600	0752 0753	C SELVES AFTER A CERTAIN LENGTH OF TIME HAS ELAPSED. THE ALGEBRAIC C SUM OF ALL THE TIME STEPS IS 1 MILLISECOND.
37700 37750	0754	C 340 IF (X.LE. 10.0) GO TO 341
37800	0756	IF (X .LE. 13.0) GO TO 342
37850	0757	IF (X .LE. 16.0) GO TO 343 IF (X .GE. 17.0) GO TO 344
37900 37950	0758	341 H = 0.000001
38000	0760	X = X + 1.0
38050	0761	VK = VK + 1
38100	0762	GO TO 345
38150	0763	342 H = 0.00003
38200 38250	0764	$\begin{array}{rcl} X & = & X + 1.0 \\ VK & = & VK + 1 \end{array}$
38300	0766	GO TO 345
38350	0767	343 H = 0.0003
38400	0768	x = x + 1.0
38450	0769	VK = VK + 1
38500	0770	GO TO 345 344 H = 0.001
38550 38600	0772	X = X + 1.0
38650	0773	VK = VK + 1
38700	0774	345 T = T + H
38750	0775	TH = TH + H
38800	0776	C
38850 38900	0777	C HERE, THE DELAYED-PRECURSOR DENSITY IS COMPUTED. SINCE THE C PRECURSORS CONSTITUTE THE SLOW MODE, THEIR TIME STEP IS 200 TIMES
38950	0779	C THE SIZE OF THE FAST MODE TIME STEP (WHICH IS 0.001 SECONDS, EXCEPT
39000	0780	C DURING THE PROMPT JUMP). THIS SECTION, OF COURSE, IS FOR THE MA-
39050	0781	C TRIX DECOUPLING ALGORITHM. DURING THE FIRST 0.2 SECONDS, THE DURA-
39100	0782	C TION OF THE PROMPT JUMP, THE DELAYED PRECURSORS ARE COMPUTED USING
39150	0783	C SMALL TIME STEPS. THEY ARE ALSO COMPUTED ONLY WHEN ENOUGH TIME C PASSED SO THAT THE TOTAL AMOUNT OF TIME IN THEIR TIME STEPS DOES
39200 39250	0784	C NOT EXCEED THE TOTAL AMOUNT OF TIME THAT HAS PASSED IN COMPUTING
39300	0786	C THE PROMPT RESPONSE. THIS IS WHAT TAKES PLACE FROM STATEMENTS 355
39350	0787	C THROUGH 370. AT ALL OTHER TIMES, THE PRECURSORS ARE COMPUTED
39400	0788	C DURING THE MIDDLE OF EACH 0.2 SECTION, TO REFELCT THEIR AVERAGE
39450 39500	0789	C VALUES. THE PRECURSORS THEMSELVES ARE NOT PART OF THE OUTPUT, C AND ARE COMPUTED ONLY BECAUSE THE POWER OUTPUT IS A FUNCTION OF
39550	0791	C THEM.
39600	0792	c
39650	0793	IF ((X .LE. 17.0) .AND. (EIG .EQ. 1)) GO TO 350
39700	0794	IF ((T.GE. 0.0996) .AND. (EIG.EQ. 1) .AND.
39750 39800	0795 0796	+ (T.LE. 0.1004) .AND. (Y.NE. 1.0)) GO TO 350 GO TO 380
39850	0797	350 H2 = H # 200.0
39900	0798	$H_{20}(VK) = H + 200.0$

(VK .GE. 20) (Y .GE. 1.1) VK = 201 F 0799 39950 GO TO 365 IF 40000 0800 (VK .GT. 0.0011)) AND. (T GO TO 375 IF .LT. 40050 0801 61 0.001911 IF .LT. GO TO 375 . AND. Т 40100 (IVL .GT. 11) 0802 0.0079)) 375 .LT. GO TO IF . AND. (T ((VL .GT. 11) 40150 0803 375 .GT. .LT. 0.0139)) GO TO 1F 12) . AND. Т 0804 ((VL 40200 375 0.0199)) . AND. GO TO IF .GT. 13) (T .LT. 0805 ((VL 40250 375 .GT. (T .LT. 0.0799)) GO TO IF (VL 14) . AND. 40300 0806 0.139911 . AND. GO TO 375 1 F .GT. 151 (T .LT. 40350 0807 ((VL (T 0.1999)) 375 . AND. .LT. GO TO 16) 0808 1 F ((VL .GT. 40400 360 1 = 1,6 DO 40450 0809 40500 0810 DO 355 J = 1,6* DYIN(J.(VL-1))) + INT INT = (B1(I,J) 40550 0811 CONTINUE 40600 0812 355 * (INT + (KM(I) * (N10 + DN1) H20(VL) DYIN(I,VL)= 0813 40650 DRO / L)) + DYIN(1, (VL-1)) 40700 0814 INT = 0.0 0815 40750 DY(1) = DYIN(I.VL) 40800 0816 CONTINUE 40850 0817 360 VL + 1 .AND. 40900 0818 VL -((VL .LE. 11 (Y .LE. 1.1) 375 I = 1.6 (VK .GT. 6)) GO TO 350 1 F 11) 40950 0819 GO TO 375 0820 1F 41000 DO 41050 0821 365 41100 0822 DO 370 J = 1,6 41150 0823 INT = (B1(1,J) * DY(J)) + 1:1T CONTINUE 0824 370 41200 0825 DY(I) = H2 # (INT + (KM(I) # (N10 + DN1) 41250 # DRO / L)) + DY(1) 0826 41300 + INT 0.0 41350 0827 = CONTINUE 41400 0828 375 IF (EIG .EQ. 1) GO TO 400 41450 0829 380 41500 0830 C HERE THE POINT-KINETICS EQUATIONS ARE SOLVED, UNLESS THE DECOUPLING OPTION HAS BEEN SELECTED. CC 41550 0831 41600 0832 41650 0833 C H * (RHO * DN1 / L + DRO * N10 / L + DRO * DN1 / L - BB * DN1 / L + SIG) + DN1 0834 41700 DN1 = 41750 0835 390 SIG 0.0 41800 0836 = SIGPJ =0.0 41850 0837 41900 0838 С HERE THE CHANGE IN DELAYED-PRECURSOR DENSITY FROM THE STEADY-41950 0839 С STATE ARE COMPUTED, UNLESS THE DECOUPLING ALGORITHM HAS BEEN SELEC-42000 0840 000 42050 0841 TED. 42100 0842 42150 0843 DO 400 I = 1,6 H # (B(I) * DN1 / L - LMB(I) * DCI(I)) + DCI(I) 42200 0844 DCI(1) = н + LMB(1) * DC1(1) * LMB(1) *(DC1(1) + C1O(1)) + SIGPJ 42250 0845 SIG = SIG 0846 42300 SIGPJ = L 42350 CONTINUE 0847 400 TTG + H 42400 0848 TTG = 42450 0849 С HERE, THE PROMPT-JUMP APPROXIMATION OR THE RAMP-INPUT MODEL C 42500 0850 42550 ARE SELECTED. 0851 42600 0852 C 0853 IF ((RI .EQ. 1)) IF (PJ .EQ. 2) .AND. (PTO .NE. 0.0)) GO TO 415 42650 GO TO 415 42700 0854 42750 0855 C

42800 42850 42900 43000 43050 43100 43150	0856 0857 0858 0859 0860 0861 0862 0863	C HERE, REACTOR POWER USING THE PROMPT-JUMP APPROXIMATION IS C COMPUTED. ALSO, INTERIM REACTIVITY FROM FEEDBACK IS COMPUTED AND C APPLIED TO THE PROMPT JUMP BEFORE IT TAKES PLACE, THUS ALTERING ITS C MAGNITUDE. THIS PREVENTS OSCILLATIONS THAT DESTROY THE SOLUTION C FROM TAKING PLACE BY THE FACT THAT IF AN UNMODIFIED PROMPT JUMP IS C ALLOWED, WHEN ITS FEEDBACK TAKES EFFECT, IT WILL PRODUCE SUCH LARGE C REACTIVITY THAT FURTHER SOLUTIONS WILL BE SO INACCURATE THAT OSCIL- LATIONS OF INCREASING MAGNITUDE WILL TAKE PLACE.
43200 43250	0864 0865	PWRPJ = SIGPJ / (BB - (RHO + DRO))
43300	0866	IF (X, GE, 2.9) GO TO 410
43350	0867 0868	405 PWRPJ = SIGPJ / (BB - (RHO + DRO1))
43400	0869	DN1 = PWRPJ - N10
43500	0870	DTFGT = DN1 # 9.4875E-10
43550	0871	DTMGT = DN1 # 2.0040E-11
43600	0872	DRO2 = DTFGT * ALPHF + DTMGT * ALPHM
43650	0873	DROT = DRO1
43700	0874	DRO1 = DRO + DRO2 DROT = DROT - DRO1
43750 43800	0875	DROT = DROT ## 2.0
43850	0877	DROT = SQRT (DROT)
43900	0878	i = 1 + 1
43950	0879	IF (I.GE. 100) GO TO 410
44000	0880	IF (DROT .GE. 1.0E-09) GO TO 405
44050	0881	410 CONTINUE
44100	0882	DN1 = PWRPJ - N10 $415 PWR2 = DN1 - PWR1$
44150	0883	415 PWR2 = DN1 - PWR1 C
44200	0884	C HERE, INTERIM REACTIVITY THAT TAKES PLACE DURING A GIVEN
	0000	
44300		C PERIOD OF 0.005 SECONDS IS COMPUTED. AFTER THIS INTERVAL, A NEW
44300	0886	C PERIOD OF 0.005 SECONDS IS COMPUTED. AFTER THIS INTERVAL, A NEW
44300 44350 44400		C PERIOD OF 0.005 SECONDS IS COMPUTED. AFTER THIS INTERVAL, A NEW C REACTIVITY BASED ON FEEDBACK IS COMPUTED, AND THE OLD INTERIM C FIGURE IS NO LONGER NEEDED.
44350	0886 0887	C PERIOD OF 0.005 SECONDS IS COMPUTED. AFTER THIS INTERVAL, A NEW C REACTIVITY BASED ON FEEDBACK IS COMPUTED, AND THE OLD INTERIM C FIGURE IS NO LONGER NEEDED. C
44350 44400 44450 44500	0886 0887 0888 0889 0890	<pre>C PERIOD OF 0.005 SECONDS IS COMPUTED. AFTER THIS INTERVAL, A NEW C REACTIVITY BASED ON FEEDBACK IS COMPUTED, AND THE OLD INTERIM C FIGURE IS NO LONGER NEEDED. C IF (DTF(K) .EQ. 0.0) DTF(K) = DTF(K-1).</pre>
44350 44400 44450 44500 44550	0886 0887 0888 0889 0890 0890	C PERIOD OF 0.005 SECONDS IS COMPUTED. AFTER THIS INTERVAL, A NEW C REACTIVITY BASED ON FEEDBACK IS COMPUTED, AND THE OLD INTERIM C FIGURE IS NO LONGER NEEDED. C IF (DTF(K) .EQ. 0.0) DTF(K) = DTF(K-1). IF (DTM(K) .EQ. 0.0) DTM(K) = DTM(K-1)
44350 44400 44450 44500 44550 44600	0886 0887 0888 0889 0890 0891 0892	C PERIOD OF 0.005 SECONDS IS COMPUTED. AFTER THIS INTERVAL, A NEW C REACTIVITY BASED ON FEEDBACK IS COMPUTED, AND THE OLD INTERIM C FIGURE IS NO LONGER NEEDED. C IF (DTF(K) .EQ. 0.0) DTF(K) = DTF(K-1). IF (DTM(K) .EQ. 0.0) DTM(K) = DTM(K-1) DTFGT = DTF(K) - DTF(K-1)
44350 44400 44450 44500 44550 44600 44650	0886 0887 0888 0889 0890 0891 0891 0892 0893	C PERIOD OF 0.005 SECONDS IS COMPUTED. AFTER THIS INTERVAL, A NEW C REACTIVITY BASED ON FEEDBACK IS COMPUTED, AND THE OLD INTERIM C FIGURE IS NO LONGER NEEDED. C IF (DTF(K) .EQ. 0.0) DTF(K) = DTF(K-1). IF (DTM(K) .EQ. 0.0) DTM(K) = DTM(K-1) DTFGT = DTF(K) - DTF(K-1) DTMGT = DTM(K) - DTM(K-1)
44350 44400 44450 44500 44550 44600 44650 44670	0886 0887 0888 0889 0890 0891 0891 0892 0893 0894	C PERIOD OF 0.005 SECONDS IS COMPUTED. AFTER THIS INTERVAL, A NEW C REACTIVITY BASED ON FEEDBACK IS COMPUTED, AND THE OLD INTERIM C FIGURE IS NO LONGER NEEDED. C IF (DTF(K) .EQ. 0.0) DTF(K) = DTF(K-1). IF (DTM(K) .EQ. 0.0) DTM(K) = DTM(K-1) DTFGT = DTF(K) - DTF(K-1) DTMGT = DTF(K) - DTF(K-1) IF (X .LE. 20.0) DTFGT = DN1 # 9.4875E-10
44350 44400 44450 44500 44550 44600 44650 44650 44700 44750	0886 0887 0888 0899 0890 0891 0892 0893 0894 0895	C PERIOD OF 0.005 SECONDS IS COMPUTED. AFTER THIS INTERVAL, A NEW C REACTIVITY BASED ON FEEDBACK IS COMPUTED, AND THE OLD INTERIM C FIGURE IS NO LONGER NEEDED. C IF (DTF(K) .EQ. 0.0) DTF(K) = DTF(K-1). IF (DTM(K) .EQ. 0.0) DTM(K) = DTM(K-1) DTFGT = DTF(K) - DTF(K-1) DTMGT = DTM(K) - DTM(K-1) IF (X .LE. 20.0) DTFGT = DN1 * 9.4875E-10 IF (X .LE. 20.0) DTMGT = DN1 * 2.0040E-11 IF (CS .EQ. 2) .AND. (KF .EQ. 2)]
44350 44400 44450 44500 44550 44600 44650 44670	0886 0887 0888 0889 0890 0891 0891 0892 0893 0894	C PERIOD OF 0.005 SECONDS IS COMPUTED. AFTER THIS INTERVAL, A NEW C REACTIVITY BASED ON FEEDBACK IS COMPUTED, AND THE OLD INTERIM C FIGURE IS NO LONGER NEEDED. C IF (DTF(K) .EQ. 0.0) DTF(K) = DTF(K-1). IF (DTM(K) .EQ. 0.0) DTM(K) = DTM(K-1) DTFGT = DTF(K) - DTF(K-1) DTMGT = DTM(K) - DTM(K-1) IF (X .LE. 20.0) DTFGT = DN1 * 9.4875E-10 IF (X .LE. 20.0) DTMGT = DN1 * 2.0040E-11 IF ((CS .EQ. 2) .AND. (KF .EQ. 2)) + DR0 = (ALPHF * (DTF(K-1) + (ADJF * DTFGT)))
44350 44400 44500 44550 44650 44650 44650 44700 44750 44850 44850 44850	0886 0887 0888 0890 0890 0891 0892 0893 0894 0895 0895 0896 0897 0898	C PERIOD OF 0.005 SECONDS IS COMPUTED. AFTER THIS INTERVAL, A NEW REACTIVITY BASED ON FEEDBACK IS COMPUTED, AND THE OLD INTERIM C FIGURE IS NO LONGER NEEDED. C IF (DTF(K) .EQ. 0.0) DTF(K) = DTF(K-1). IF (DTM(K) .EQ. 0.0) DTM(K) = DTM(K-1) DTFGT = DTF(K) - DTF(K-1) DTMGT = DTM(K) - DTM(K-1) IF (X .LE. 20.0) DTFGT = DN1 * 9.4875E-10 IF (X .LE. 20.0) DTMGT = DN1 * 2.0040E-11 IF ((CS .EQ. 2) .AND. (KF .EQ. 2)) + (ALPHM * (DTF(K-1) + (ADJF * DTFGT))) + (ALPHM * (DTM(K-1) + (ADJM * DTMGT)))
44350 44400 44500 44550 44650 44650 44650 44700 44750 44850 44850 44850 44900 44950	0886 0887 0888 0890 0890 0891 0892 0893 0894 0895 0895 0896 0897 0898 0899	C PERIOD OF 0.005 SECONDS IS COMPUTED. AFTER THIS INTERVAL, A NEW C REACTIVITY BASED ON FEEDBACK IS COMPUTED, AND THE OLD INTERIM C FIGURE IS NO LONGER NEEDED. C IF (DTF(K) .EQ. 0.0) DTF(K) = DTF(K-1). IF (DTM(K) .EQ. 0.0) DTM(K) = DTM(K-1) DTFGT = DTF(K) - DTF(K-1) DTMGT = DTM(K) - DTM(K-1) IF (X .LE. 20.0) DTFGT = DN1 * 9.4875E-10 IF (X .LE. 20.0) DTMGT = DN1 * 2.0040E-11 IF ((CS .EQ. 2) .AND. (KF .EQ. 2)) + DRO = (ALPHF * (DTF(K-1) + (ADJF * DTFGT))) + (ALPHM * (DTM(K-1) + (ADJM * DTMGT))) + DROIN + (RIR * TTG)
44350 44400 44500 44550 44650 44650 44650 44650 44750 44850 44850 44950 44950 44950	0886 0887 0888 0899 0890 0891 0892 0893 0894 0895 0896 0895 0896 0897 0898 0899 0899	C PERIOD OF 0.005 SECONDS IS COMPUTED. AFTER THIS INTERVAL, A NEW REACTIVITY BASED ON FEEDBACK IS COMPUTED, AND THE OLD INTERIM C FIGURE IS NO LONGER NEEDED. C IF (DTF(K) .EQ. 0.0) DTF(K) = DTF(K-1). IF (DTM(K) .EQ. 0.0) DTM(K) = DTM(K-1) DTFGT = DTF(K) - DTF(K-1) DTMGT = DTM(K) - DTM(K-1) IF (X .LE. 20.0) DTMGT = DN1 * 9.4875E-10 IF (X .LE. 20.0) DTMGT = DN1 * 2.0040E-11 IF ((CS .EQ. 2) .AND. (KF .EQ. 2)) + DRO = (ALPHF * (DTF(K-1) + (ADJF * DTFGT))) + (ALPHM * (DTM(K-1) + (ADJM * DTMGT))) + (ALPHM * (DTM(K-1) + (ADJM * DTMGT))) + (CS .EQ. 1) .AND. (KF .EQ. 2))
44350 44400 44500 44550 44650 44650 44650 44700 44750 44850 44900 44900 45050	0886 0887 0888 0890 0891 0892 0893 0893 0895 0895 0896 0897 0898 0899 0898 0899 0900 0901	C PERIOD OF 0.005 SECONDS IS COMPUTED. AFTER THIS INTERVAL, A NEW REACTIVITY BASED ON FEEDBACK IS COMPUTED, AND THE OLD INTERIM C FIGURE IS NO LONGER NEEDED. C IF (DTF(K) .EQ. 0.0) DTF(K) = DTF(K-1). IF (DTM(K) .EQ. 0.0) DTM(K) = DTM(K-1) DTFGT = DTF(K) - DTF(K-1) DTMGT = DTM(K) - DTM(K-1) IF (X .LE. 20.0) DTFGT = DN1 * 2.0040E-11 IF ((CS .EQ. 2) .AND. (KF .EQ. 2)) + DRO = (ALPHF * (DTF(K-1) + (ADJF * DTFGT))) + (ALPHM * (DTM(K-1) + (ADJM * DTMGT))) + (CS .EQ. 1) .AND. (KF .EQ. 2)) F ((CS .EQ. 1) .AND. (KF .EQ. 2)) + (DRO = (ALPHF * (DTF(K-1) + (ADJF * DTFGT))) + (DRO = (ALPHF * (DTF(K-1) + (ADJF * DTFGT))) + (DRO = (ALPHF * (DTF(K-1) + (ADJF * DTFGT)))
44350 44400 44500 44550 44650 44650 44650 44650 44750 44850 44850 44950 44950 44950	0886 0887 0888 0890 0891 0892 0893 0894 0895 0895 0895 0896 0897 0898 0899 0900 0901 0902	C PERIOD OF 0.005 SECONDS IS COMPUTED. AFTER THIS INTERVAL, A NEW REACTIVITY BASED ON FEEDBACK IS COMPUTED, AND THE OLD INTERIM C FIGURE IS NO LONGER NEEDED. C IF (DTF(K) .EQ. 0.0) DTF(K) = DTF(K-1). IF (DTM(K) .EQ. 0.0) DTM(K) = DTM(K-1) DTFGT = DTF(K) - DTF(K-1) DTMGT = DTM(K) - DTM(K-1) IF (X .LE. 20.0) DTFGT = DN1 * 9.4875E-10 IF (X .LE. 20.0) DTMGT = DN1 * 2.0040E-11 IF ((CS .EQ. 2) .AND. (KF .EQ. 2)) + DRO = (ALPHF * (DTF(K-1) + (ADJF * DTFGT))) + (ALPHM * (DTM(K-1) + (ADJM * DTMGT))) + (ALPHM * (DTF(K-1) + (ADJF * DTFGT))) + (ALPHM * (DTF(K-1) + (ADJF * DTFGT))) + (ALPHM * (DTF(K-1) + (ADJF * DTFGT))) + (ALPHM * (DTM(K-1) + (ADJM * DTMGT))) + (ALPHM * (DTM(K-1) + (ADJM * DTMGT)))
44350 44400 44500 44550 44600 44650 44650 44750 44850 44850 44850 44850 44900 44950 45000 45000 45100	0886 0887 0888 0890 0891 0892 0893 0893 0895 0895 0896 0897 0898 0899 0898 0899 0900 0901	C PERIOD OF 0.005 SECONDS IS COMPUTED. AFTER THIS INTERVAL, A NEW REACTIVITY BASED ON FEEDBACK IS COMPUTED, AND THE OLD INTERIM C FIGURE IS NO LONGER NEEDED. C IF (DTF(K) .EQ. 0.0) DTF(K) = DTF(K-1). IF (DTM(K) .EQ. 0.0) DTM(K) = DTM(K-1) DTFGT = DTF(K) - DTF(K-1) DTMGT = DTM(K) - DTM(K-1) IF (X .LE. 20.0) DTFGT = DN1 * 9.4875E-10 IF (X .LE. 20.0) DTMGT = DN1 * 2.0040E-11 IF ((CS .EQ. 2) .AND. (KF .EQ. 2)) + DRO = (ALPHF * (DTF(K-1) + (ADJF * DTFGT))) + (ALPHM * (DTM(K-1) + (ADJM * DTMGT))) + (ALPHM * (DTF(K-1) + (ADJF * DTFGT))) + (ALPHM * (DTF(K-1) + (ADJF * DTFGT))) + (ALPHM * (DTF(K-1) + (ADJF * DTFGT))) + (ALPHM * (DTM(K-1) + (ADJM * DTMGT))) + (DTMGT * ADJM) + (H * ADJM * DTMGT /
44350 44400 44500 44550 44650 44650 44650 44750 44800 44850 44850 44900 45050 45100 45150 45120 45220 45250	0886 0887 0888 0890 0891 0892 0893 0894 0895 0896 0896 0897 0898 0897 0898 0899 0900 0901 0902 0904 0905	C PERIOD OF 0.005 SECONDS IS COMPUTED. AFTER THIS INTERVAL, A NEW REACTIVITY BASED ON FEEDBACK IS COMPUTED, AND THE OLD INTERIM C FIGURE IS NO LONGER NEEDED. C IF (DTF(K) .EQ. 0.0) DTF(K) = DTF(K-1). IF (DTM(K) .EQ. 0.0) DTM(K) = DTM(K-1) DTFGT = DTF(K) - DTF(K-1) DTMGT = DTM(K) - DTM(K-1) IF (X .LE. 20.0) DTFGT = DN1 * 9.4875E-10 IF (X .LE. 20.0) DTMGT = DN1 * 2.0040E-11 IF ((CS .EQ. 2) .AND. (KF .EQ. 2)) + DRO = (ALPHF * (DTF(K-1) + (ADJF * DTFGT))) + (ALPHM * (DTM(K-1) + (ADJM * DTMGT))) + (ALPHM * (DTM(K-1) + (H * (AA * + (DTMGT * ADJM) + (H * ADJM * DTMGT / TAU)))) + DRC
44350 44400 44500 44550 44650 44650 44650 44700 44750 44750 44850 44950 45000 45150 45150 45250 45200 45300	0886 0887 0888 0890 0891 0892 0893 0894 0895 0896 0895 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906	C PERIOD OF 0.005 SECONDS IS COMPUTED. AFTER THIS INTERVAL, A NEW REACTIVITY BASED ON FEEDBACK IS COMPUTED, AND THE OLD INTERIM FIGURE IS NO LONGER NEEDED. C IF (DTF(K) .EQ. 0.0) DTF(K) = DTF(K-1). IF (DTM(K) .EQ. 0.0) DTM(K) = DTM(K-1) DTFGT = DTF(K) - DTF(K-1) DTMGT = DTM(K) - DTM(K-1) IF (X .LE. 20.0) DTFGT = DN1 * 9.4875E-10 IF (X .LE. 20.0) DTFGT = DN1 * 2.0040E-11 IF ((CS .EQ. 2) .AND. (KF .EQ. 2)) + DRO = (ALPHF * (DTF(K-1) + (ADJF * DTFGT))) + (ALPHM * (DTM(K-1) + (ADJM * DTMGT))) + DRO = (ALPHF * (DTF(K-1) + (ADJM * DTMGT))) + (ALPHM * (DTM(K-1) + (ADJM * DTMGT))) + (ALPHM * (DTM(K-1) + (ADJM * DTMGT))) + (ALPHM * (DTM(K-1) + (ADJM * DTMGT))) + (DTMGT * ADJM) + (H * (AA * (DTMGT * ADJM)) + (H * (AA * (TAU)))) + DRC IF (TTG .GE. TTOT) TTG = TTOT
44350 444500 44500 44550 44600 44650 44650 44750 44850 44850 44850 44850 44850 44900 45000 45150 45150 45250 45350 45350	0886 0887 0888 0890 0891 0892 0893 0894 0895 0896 0895 0896 0897 0898 0899 0900 0901 0902 0901 0902 0904 0904 0905 0906 0907	C PERIOD OF 0.005 SECONDS IS COMPUTED. AFTER THIS INTERVAL, A NEW REACTIVITY BASED ON FEEDBACK IS COMPUTED, AND THE OLD INTERIM C FIGURE IS NO LONGER NEEDED. C IF (DTF(K) .EQ. 0.0) DTF(K) = DTF(K-1). IF (DTM(K) .EQ. 0.0) DTM(K) = DTM(K-1) DTFGT = DTF(K) - DTF(K-1) DTMGT = DTM(K) - DTM(K-1) IF (X .LE. 20.0) DTFGT = DN1 * 9.4875E-10 IF (X .LE. 20.0) DTMGT = DN1 * 2.0040E-11 IF ((CS .EQ. 2) .AND. (KF .EQ. 2)) + DRO = (ALPHF * (DTF(K-1) + (ADJF * DTFGT))) + (ALPHM * (DTM(K-1) + (ADJM * DTMGT))) + (ALPHM * (DTM(K-1) + (H * (AA * + (DTMGT * ADJM) + (H * ADJM * DTMGT / TAU)))) + DRC
44350 444500 44500 44550 44600 44650 44700 44700 44850 44850 44850 44850 44900 45000 45150 45150 45150 45250 45250 45350 45350 45350	0886 0887 0888 0890 0891 0892 0893 0894 0895 0896 0897 0898 0899 0900 09001 0902 0903 0904 0905 0906 0907 0908	C PERIOD OF 0.005 SECONDS IS COMPUTED. AFTER THIS INTERVAL, A NEW C REACTIVITY BASED ON FEEDBACK IS COMPUTED, AND THE OLD INTERIM C FIGURE IS NO LONGER NEEDED. C IF (DTF(K) .EQ. 0.0) DTF(K) = DTF(K-1). IF (DTM(K) .EQ. 0.0) DTM(K) = DTM(K-1) DTFGT = DTF(K) - DTF(K-1) DTMGT = DTM(K) - DTF(K-1) IF (X .LE. 20.0) DTFGT = DN1 * 9.4875E-10 IF (X .LE. 20.0) DTMGT = DN1 * 2.0040E-11 IF ((CS .EQ. 2) .AND. (KF .EQ. 2)) + DRO = (ALPHF * (DTF(K-1) + (ADJF * DTFGT))) + (ALPHM * (DTM(K-1) + (ADJM * DTMGT))) + DROIN + (RIR * TTG) IF ((CS .EQ. 1) .AND. (KF .EQ. 2)) + DRO = (ALPHF * (DTF(K-1) + (ADJF * DTFGT))) + (ALPHM * (DTM(K-1) + (ADJF * DTFGT))) + (ALPHM * (DTM(K-1) + (ADJF * DTFGT))) + (ALPHM * (DTM(K-1) + (ADJM * DTMGT))) + (DROIN + (RIR * TTG) + (H * (AA * (DTMGT * ADJM) + (H * ADJM * DTMGT))) + (TTG .GE. TTOT) TTG = TTOT
44350 444500 44500 44550 44600 44650 44650 44750 44850 44850 44850 44850 44850 44900 45000 45150 45150 45250 45350 45350	0886 0887 0888 0890 0891 0892 0893 0894 0895 0896 0895 0896 0897 0898 0899 0900 0901 0902 0901 0902 0904 0904 0905 0906 0907	C PERIOD OF 0.005 SECONDS IS COMPUTED. AFTER THIS INTERVAL, A NEW REACTIVITY BASED ON FEEDBACK IS COMPUTED, AND THE OLD INTERIM FIGURE IS NO LONGER NEEDED. C IF (DTF(K) .EQ. 0.0) DTF(K) = DTF(K-1). IF (DTM(K) .EQ. 0.0) DTM(K) = DTM(K-1) DTFGT = DTF(K) - DTF(K-1) DTMGT = DTM(K) - DTM(K-1) IF (X .LE. 20.0) DTFGT = DN1 * 9.4875E-10 IF (X .LE. 20.0) DTMGT = DN1 * 2.0040E-11 IF ((CS .EQ. 2) .AND. (KF .EQ. 2)) + DRO = (ALPHF * (DTF(K-1) + (ADJF * DTFGT))) + (ALPHM * (DTM(K-1) + (ADJM * DTMGT))) + (ALPHM * (DTM(K-1) + (ADJM * DTMGT))) + (ALPHM * (DTM(K-1) + (ADJF * DTFGT))) + (ALPHM * (DTM(K-1) + (ADJF * DTFGT))) + (ALPHM * (DTM(K-1) + (ADJM * DTMGT))) + (ALPHM * (DTM(K-1) + (ADJM * DTMGT))) + (IDMGT * ADJM) + (H * (AA * + (DTMGT * ADJM) + (H * ADJM * DTMGT / IF (TTG .GE. TTOT) TTG = TTOT C
44350 44450 44500 44550 44650 44650 44650 44700 44700 44700 44850 44850 44900 45050 45100 45100 45100 45250 45300 45350 45450 45450	0886 0887 0888 0890 0891 0892 0893 0894 0895 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0904 0905 0906 0907 0908 0909	C PERIOD OF 0.005 SECONDS IS COMPUTED. AFTER THIS INTERVAL, A NEW C REACTIVITY BASED ON FEEDBACK IS COMPUTED, AND THE OLD INTERIM C FIGURE IS NO LONGER NEEDED. C IF (DTF(K) .EQ. 0.0) DTF(K) = DTF(K-1). IF (DTM(K) .EQ. 0.0) DTM(K) = DTM(K-1) DTFGT = DTF(K) - DTF(K-1) DTMGT = DTM(K) - DTF(K-1) IF (X .LE. 20.0) DTFGT = DN1 * 9.4875E-10 IF (X .LE. 20.0) DTMGT = DN1 * 2.0040E-11 IF ((CS .EQ. 2) .AND. (KF .EQ. 2)) + DRO = (ALPHF * (DTF(K-1) + (ADJF * DTFGT))) + (ALPHM * (DTM(K-1) + (ADJM * DTMGT))) + DROIN + (RIR * TTG) IF ((CS .EQ. 1) .AND. (KF .EQ. 2)) + DRO = (ALPHF * (DTF(K-1) + (ADJF * DTFGT))) + (ALPHM * (DTM(K-1) + (ADJF * DTFGT))) + (ALPHM * (DTM(K-1) + (ADJF * DTFGT))) + (ALPHM * (DTM(K-1) + (ADJM * DTMGT))) + (DROIN + (RIR * TTG) + (H * (AA * (DTMGT * ADJM) + (H * ADJM * DTMGT))) + (TTG .GE. TTOT) TTG = TTOT

.

45650	0913	C DMTN. C
45700	0914	
45750	0915	IF (EIG . EQ. 2) GO TO 440
45800	0916	DY(7) = H + ((B2 + DY(7)) + ((N10 + DN1))
45850	0917	+ $+$ $+$ $+$ $DRO / L)) + DY(7)$
45900	0918	$H_2 = H * 200.0$
45950	0919	DO 420 I = 1,6
46000	0920	INT = LM(I) * DY(I) + INT
46050	0921	420 CONTINUE
	0922	DN1 = (DY(7) * LK) - INT
46100		
46150	0923	
46200	0924	430 IF (TH .LT. 0.0042) GO TO 330
46250	0925	440 IF (NK .EQ. 1) TTG = TTG + 0.2
46300	0926	IF (NK . EQ. 1) T = 0.2
46350	0927	450 IF (T.GE. 0.1995) GO TO 460
46400	0928	IF (T.LT. 0.1995) GO TO 470
46450	0929	460 T = 0.0
46500	0930	470 TH = 0.0
46550	0931	PWR1 = DN1
46600	0932	PTO = PTG
46650	0933	480 RP(K) = N10 + DN1
		400
46700	0934	RETURN
46750	0935	END

,

THERMAL-HYDRAULICS EQUATIONS C C THIS IS THE SUBROUTINE THAT MODELS THE THERMAL-HYDRAULICS EQUATIONS. AS INPUT, IT RECEIVES REACTOR POWER INFORMATION FROM THE REACTOR KINETICS SUBROUTINE (GALBA) AND REACTOR INLET TEMP-ERATURE INFORMATION FROM THE STEAM GENERATOR SUBROUTINE (DMTN). AS OUTPUT, IT COMPUTES MODERATOR TEMPERATURE CHANGES AND REACTOR OUTLET TEMPERATURE CHANGES AND FUEL TEMPERATURE CHANGES. ALL ARE DISPLAYED IN THE OUTPUT. AS IN THE OTHER SUBROUTINES, OTHO SOLVES TWO COUPLED DIFFEREN-AS IN THE UTHER SUBROUTINES, OTHO SOLVES TWO COUPLED DIFFERE TIAL EQUATIONS. HERE, THE VARIABLES SOLVED FOR ARE MODERATOR TEMPERATURE CHANGE AND THE SKIN TEMPERATURE CHANGE ON THE FUEL ASSEMBLIES. FROM THESE ARE COMPUTED REACTOR OUTLET TEMPERTURE CHANGE AND FUEL TEMPERATURE CHANGE. TIME STEPS IN OTHO ARE 0.005 C C SECONDS. SUBROUTINE OTHO AA, ADTI, ADTO, ALPHF, ALPHM, CPPAV, CS, DN1, DRO. DTF, DTI, DTM, DTO, DTS, DTSG, EIG, F. H, IS. K, KF, LND, MDOTP, NK, NN, N1O, Q, PJ, PT. RHO, RI, RIR, RP, STMG, STMGEN, TAU, TAUC, TF1, TM, TT, TTOT, VO, VOSS, Y, ZZ COMMON + + + + VOSS, Y, ZZ AA, ALPHF, ALPHM, CPPAV, DN1, DRO, H, MDOTP, N10, RHO, RIR, STMGEN, TAU, TAUC, TF1, TM1, TTOT, VO, VOSS, Y CS, EIG, F, IS, J, K, KF, LND, NK, NN, PJ, Q, RI, ZZ ADTI(1510), ADTO(1510), DTF(1510), DTI(1510), DTM(1510), DTO (1510), DTSG(1510), DTS(1510), RP(1510), TT (1510), TT (1510), STMC(1510) REAL + INTEGER REAL + (1510), STMG(1510) PT IN ADDITION TO THOSE USED N THE COMMON BLOCK, THE FOLLOWING C VARIABLES ARE USED IN OTHO: C IS THE HEAT TRANSFER AREA. AR IS THE HEAT CAPACITY OF THE REACTOR COOLANT IS THE HEAT CAPACITY OF THE FUEL. CPAV CPF IS THE HEAT CAPACITY OF THE REACTOR COOLANT AT THE CPHS REACTOR OUTLET. IS THE HEAT CAPACITY OF THE REACTOR COOLANT AT THE CPLS REACTOR INLET. IS THE DIAMETER OF REACTOR COOLANT FLOW CHANNEL. IS CHANGE INTEMPERATURE OF THE SURFACE OF THE FUEL ASSEMBLIES FROM THE STEADY-STATE TEMPERATURES. D DTC IS CHANGE IN REACTOR MODERATOR (COOLANT) TEMPERATURE DTMO FROM STEADY-STATE FROM STEADY-STATE. IS A FACTOR WHICH ADJUSTS FOR THE FACT THAT CP DOES NOT VARY LINEARLY WITH TEMPERATURE CHANGE. WITH FRAC, ONE CAN OBTAIN TRUE AVERAGE CP AND MODERA-TOR TEMPERATURE BY TAKING THE LINEAR AVERAGE OF OF THE EXTREMES AT INLET AND OUTLET CONDITIONS, AND MULTIPLYING THE DIFFERENCE BY FRAC, AND THEN ADDING TO THE LOW-EXTREME CONDITON. IS THE HEAT TRANSFER COEFFICIENT IT IS DERIVED VIA FRAC C IS THE HEAT TRANSFER COEFFICIENT. IT IS DERIVED VIA C HP C THE DITTIUS-BOELTER' CORRELATION.

05800	0058	KP IS THE THERMAL CONDUCTIVITY OF THE REACTOR COOLANT.
05900	0059	MF IS THE MASS OF THE FUEL.
06000	0060	MM IS THE MASS OF REACTOR COOLANT. MUP IS THE KINEMATIC VISCOSITY OF THE REACTOR COOLANT.
06100	0061	
06200	0062	NU IS THE NUSSELT NUMBER OF THE REACTOR COULANT.
06300	0063	PRP IS THE PRANDTL NUMBER OF THE REACTOR COOLANT.
06400	0064	REP IS THE REYNOLDS NUMBER OF THE REACTOR COOLANT.
06500	0065	NUP IS THE DYNAMIC VISCOSITY OF THE REACTOR COOLANT. PRP IS THE PRANDTL NUMBER OF THE REACTOR COOLANT. REP IS THE REYNOLDS NUMBER OF THE REACTOR COOLANT. ROP IS THE DENSITY OF THE REACTOR COOLANT.
06600	0067	T IS THE AMOUNT OF TIME EXPIRED DURING THE CURRENT
06800	0068	
06900	0069	C EACH OTHO CYCLE.
07000	0070	TIIS IS INITIAL REACTOR INLET TEMPERATURE.
07100	0071	CYCLE. IS RESET TO ZERO AT THE BEGINNING OF EACH OTHO CYCLE. CTIIS IS INITIAL REACTOR INLET TEMPERATURE. CTOIS IS INITIAL REACTOR OUTLET TEMPERATURE. CTPAV IS INITIAL AVERAGE COOLANT TEMPERATURE. IS USED
07200	0072	C TPAV IS INITIAL AVERAGE COOLANT TEMPERATURE. IS USED TO COMPUTE HEAT TRANSFER VARIABLES SUCH AS
07300	0073	C TO COMPUTE HEAT TRANSFER VARIABLES SUCH AS C DENSITY.
07400	0074	TPAVS IS THE SAME AS TPAV.
07500	0075	C TPAVS IS THE SAME AS TPAV. C VMOD IS VELOCITY (5 MASS FLOW.
07700	0077	C X IS AN INTEGER. THE VALUE OF WHICH DETERMINES THE
07800	0078	SIZE OF THE TIME STEP DURING THE FIRST CYCLE.
07900	0079	
08000	0080	REAL AR, CPAV, CPF, CPHS, CPLS, D, DTC, DTMO, DTOO, FRAC,
08100	0081	+ HP, KP, MF, MM, MUP, NU, NUP, PRP, REP, ROP, T,
08200	0082	+ TIIS, TOIS, TPAV, TPAVS, VMOD
08300	0083	THIEGER
08500	0085	C INITIALIZATIONS TAKE PLACE HERE, DURING THE FIRST Q.2 SECONDS,
08600	0086	C ONLY.
08700	0087	
08800	0088	IF (Y.GE. 3.0) GO TO 10
08900	0089	AR = 5945.0 CPF = 0.18477 * (TF1 + DTF(K)) + 74.4
09000	0090	D = 0.012
09200	0092	DTC = 0.0
09300	0093	DTMO = 0.0
09400	0094	DTOO = 0.0
09500	0095	TI1S = $(565.0 \pm 5.0 / 9.0) - (28.45 \pm 5.0/9.0) \pm N10/3.0E09$
09600	0096	TO1S = (565.0 + 5.0 / 9.0) + (28.45 + 5.0/9.0) + N10/3.0E09
09700	0097	CPHS = 4992.4097749+ 2.49340775E-04 * EXP(0.04825458 *T01S) CPLS = 4992.4097749+ 2.49340775E-04 * EXP(0.04825458 *T11S)
09800	0098	CPLS = 4992.4097749+ 2.49340775E-04 * EXP(0.04825458 *1115) FRAC = 0.5 * 5932.2566914 / CPPAV
09900	0099	MF = 1.91E05
10100	0101	T = 0.0
10200	0102	TPAVS = FRAC * (TO1S - TI1S) + TI1S
10300	0103	TPAV = TPAVS
10400	0104	× = 1
10500	0105	0.001710005
10600	0106	10 CONTINUE
10700	0107	C HERE THE HEAT TRANSFER CORRELATIONS ARE DEFIVED, IN TERMS OF
10900	0109	C THE DITTIUS-BOELTER CORRELATION.
11000	0110	
11100	0111	CPAV = 4992.4097749+ 2.49340775E-04 * EXP(0.04825458 *TPAV)
11200	0112	ROP = 881.6309 - 2.86514041 + EXP(0.013303415+TPAV)
11300	0113	VMOD = MDOTP / (5.26 * ROP) KP = 0.7127683 - 3.02500000E - 03 * EXP(0.01321074 * TPAV)
1400	0114	Kr = 0.1121003- 3.02000000 03 ENT[0.0321014 11AV]

11500 11600 11700 11800 11900 12000 12100 12200	0115 0116 0117 0118 0119 0120 0121 0122	$\begin{array}{rcl} MUP &=& -3.53438229E-07 \ \mbox{$^{\rm TPAV}$} &+& 1.9978561E-04 \\ NUP &=& & MUP \ \mbox{$^{\rm REP}$} &=& & VMOD \ \mbox{$^{\rm PRP}$} &=& & VMOD \ \mbox{$^{\rm PRP}$} &=& & VMOP \ \mbox{$^{\rm REP}$} \ \mbox{$^{\rm REP}$} &+& O.80 \ \mbox{$^{\rm REP}$} \ \mbox{$^{\rm REP}$} \ \mbox{$^{\rm REP}$} &=& O.0250 \ \mbox{$^{\rm REP}$} \ \mb$
12300	0123	C AS IN GALBA, ARBITRARILY SMALL TIME STEPS ARE SELECTED DURING C THE FIRST CYCLE.
12500 12600 12700 12800 12900 13000	0125 0126 0127 0128 0129 0130	20 IF (X .LE. 10) GO TO 21 IF (X .LE. 13) GO TO 22 IF (X .LE. 16) GO TO 23 IF (X .LE. 20) GO TO 24 IF (X .GE. 21) GO TO 25
13100	0131 0132	21 H = 0.000001 X = X + 1
13300 13400 13500	0133 0134 0135	$\begin{array}{rcrcrcccccccccccccccccccccccccccccccc$
13600 13700 13800	0136 0137 0138	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
13900	0139 0140	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
14100 14200 14300	0141 0142 0143	$ \begin{array}{rcl} $
14400 14500 14600	0144 0145 0146	30 CONTINUE
14700 14800 14900 15000 15100 15200 15200 15400 15500	0147 0148 0149 0150 0151 0152 0153 0154 0155	C HERE THE THERMAL-HYDRAULICS EQUATIONS PROPER ARE SOLVED. C THE NOTEWORTHY FEATURE IS THAT THEY ARE SOLVED FOR CLADDING C SURFACE TEMPERATURE CHANGE (DTC) AND MODERATOR TEMPERATURE C CHANGE, INSTEAD OF FUEL AND MODERATOR TEMPERATURE CHANGES. C LATER, SINCE IT IS ASSUMED THAT AVERAGE FUEL TEMPERATURE C CHANGE IS PROPORTIONAL TO CLADDING TEMPERATURE CHANGE, C A FUEL TEMPERATURE CHANGE IS COMPUTED AS A FUNCTION OF C CLADDING TEMPERATURE CHANGE.
15600 15700 15800 16000 16100 16200 16300 16400 16500 16600	0156 0157 0158 0159 0160 0161 0162 0163 0163 0165 0165 0166	CPF = 0.18477 * (TF1 + DTF(K)) + 74.4 DTC = H / (CPF * MF) * (DN1 - (HP * AR * (DTC - DTMO))) + DTC IF (K .GE. 56) GO TO 40 DTMO = H / (CPPAV * MM) * (HP * AR * (DTC - DTMO) - (CPPAV * MDOTP * DTOO)) + DTMO GO TO 50 H / (CPPAV * MM) * ((HP * AR * (DTC - DTMO)) - (CPPAV * MDOTP * (DTOO - DTI(K-29)))) + TMO T = T + H
16700 16800 16900 17000 17100	0167 0168 0169 0170 0171	C HERE, REACTOR OUTLET TEMPERATURE CHANGE IS COMPUTED. IF (K .LE. 55) DTOO = 2.0 * DTMO IF (K .GT. 55) DTOO = 2.0 * DTMO - DTI(K-29)

17200	0172	1F ((T .LT.	0	.2) .AND.	(NK	.EQ.	1))	GO	TO	20
17300	0173			m	TPAVS + D						20
17400	0174	D	F(K) :	=	10.0 * DT	C					
17500	0175	D	M(K)	=	DTMO						
17600	0176	DI	O(K)	=	DTOO						
17700	0177	н		=	0.2						
17800	0178	т		-	0.0						
17900	0179	RETU	RN								
18000	0180	END									

,

SIMPLE STEAM GENERATOR MODEL С С This is the subroutine that depicts the simple steam generator C model. As input, it receives moderator temperature change (f the steady-state) data from OTHO (the subroutine dealing with C (from CCC reactor thermal hydraulics), or instructions on what the outlet valve position is to be fixed at, from the main program NERO. It computes reactor inlet temperature changes and steam generator power as output. Reactor inlet temperature changes are utilized in С С CCC OTHO to affect overall reactor moderator temperature, and both are displayed as output in the main program, either in graphics or in a table. C С As in the other subroutines, DMTN solves two coupled diffential equations. Here, the variables solved for are steam generator temperature and steam temperature on the secondary side of the steam generator. By "steam generator" is meant all of the liquid CCC in the primary side of the steam generator plus all of the material C that makes up the steam gererator itself. The finite-difference method is used to solve these differential equations. In the case CCC of the steam temperature on the secondary side, it is assumed that the control system will, at the end of each time step, automati-cally adjust the flow of the coolant so as to restore the secondary C side back to equilibrium conditions. Thus, the steam temperature from the previous iteration is not used as input during the current C CCC Time steps in DMTN are 0.2 seconds. iteration. CC From steam temperature changes are computed enthalpy changes on the secondary side. From this, power changes are computed, and from this come secondary side flow changes and total steam genera-function of primary side temperature changes and reactor outlet Reactor inlet temperature changes are computed as a temperature changes (which is output into DMTN for OTHO, as C explained above). SUBROUTINE DMTN AA, ADTI, ADTO, ALPHF, ALPHM, CPPAV, CS, DN1, DRO, DTF, DTI, DTM. DTO, DTS, DTSG, EIG, F, H. IS, K, KF LND, MDOTP, NK, NN, N10, Q, PJ, PT, RHO, RI, RIR, RP, STMG, STMGEN, TAU, TAUC, TF1, TM, TT, TTOT, VO, VOSS, Y, ZZ COMMON KF, + + + + VOSS, Y, ZZ AA, ALPHF, ALPHM, CPPAV, DN1, DRO, H, MDOTP, N10, RHO, RIR, STMGEN, TAU, TAUC, TF1, TM1, TTOT, VO, VOSS, Y CS, EIG, F, IS, J, K, KF, LND, NK, NN, PJ, Q, RI. X, ZZ ADTI(1510), ADTO(1510), DTF(1510). DTI(1510), DTM(1510), DTO(1510), DTSG(1510), DTS(1510), RP (1510), TT(1510), PT (1510), STMG(1510), B(6), LMB(6) AR, CPTM, DENTH, DENTC, DHFG, DPS, DTSD, DTSGD, HS, LMTD, MDOTS, MDOTCA, MDOTCO, MDOTSF, MMSG, PS, PSS, PWR, PWRCH, TI1, TO1, TOF, TS, TD REAL INTEGER REAL + + REAL + IN ADDITION TO THE VARIABLES CARRIED THROUGH IN THE COMMON CC BLOCK, THE FOLLOWING VARIABLES ARE USED IN DMTN:

.

	0050	С	AR	IS THE HEAT TRANSFER AREA.
05800	0058	C	CPTM	IS A COMBINATION TERM. IT EQUALS THE TOTAL HEAT
05900	0060	C	9111	CAPACITY TIMES THE TOTAL MASS OF WATER ON THE
06000	0061	č		SECONDARY SIDE
06200	0062	C	DENTH	IS THE CHANGE IN ENERGY ON THE SECONDARY SIDE CAUSED
06300	0063	č		BY A CHANGE IN POWER TRANSFER RATE FROM THE PRIMARY
06400	0064	0000		SIDE
06500	0065	C	DENTC	IS THE CHANGE IN ENERGY ON THE SECONDARY SIDE FROM
06600	0066	C		ONE TIME STEP TO THE NEXT CAUSED BY THE "EXTRA POWER
06700	0067	C		BOOST" THIS BOOST IS INTRODUCED IN ORDER THAT THE
06800	0068	C		CHANGE IN STEAM GENERATOR POWER BE TEMPORARILY GREA-
06900	0069	C		TER THAN REACTOR POWER CHANGE. THIS IS NECESSARY
07000	0070	C		BECAUSE IMMEDIATELY AFTER THE PROMPT-JUMP, REACTOR
07100	0071	C		POWER CHANGE IS GREATER THAN STEAM GENERATOR POWER
07200	0072	C		CHANGE, AND THE ESTABLISHMENT OF A LONG-TERM ENERGY
07300	0073	CCC		BALANCE REQUIRES THAT THE STEAM GENERATOR HAVE THIS
07400	0074	С		"EXTRA POWER BOOST" IN ORDER TO "CATCH UP".
07500	0075	c	DHFG	IS TOTAL CHANGE IN ENTHALPY FOR A KILOGRAM OF WATER
07600	0076	С		FROM THE INLET OF THE STEAM GENERATOR (235 C) TO
07700	0077	C		OUTLET (311.1 C, INCLUDING 33.33 DEGREES OF
07800	0078	cc		SUPERHEAT).
07900	0079	C	DTSD	IS THE CHANGE OF TEMPERATURE ON THE SECONDARY SIDE.
08000	0080	000	27000	USED ONLY DURING THE FIRST 0.2 SECONDS.
08100	0081	C	DTSGD	IS THE CHANGE OF TEMPERATURE ON THE PRIMARY SIDE. USED ONLY DURING THE FIRST 0.2 SECONDS.
08200	0082	C	116	IS THE HEAT TRANSFER COEFFICIENT. IT IS A FUNCTION
08300	0083	C	HS	OF MDOTS ** 0.806.
08400	0084	CC	LMTD	IS THE LOGARITHMIC MEAN TEMPERATURE DIFFERENCE
08500	0085	c	CHID	BETWEEN THE PRIMARY SIDE AND THE SECONDARY SIDE.
08700	0087	č	MDOTS	IS THE MASS FLOW RATE ON THE SECONDARY SIDE.
08800	0088	č		IS THE CHANGE IN MASS FLOW RATE ON THE SECONDARY
08900	0089	č		SIDE.
09000	0090	C	MDOTCO	IS THE VALUE FOR MODTCA DURING THE PREVIOUS
09100	0091	CCC		ITERATION.
09200	0092	CC	MMSG	IS THE MASS OF WATER IN THE PRIMARY SIDE OF THE
09300	0093	С		STEAM GENERATOR.
09400	0094	CC	PWR	IS CURRENT POWER OUTPUT OF THE STEAM GENERATOR,
09500	0095	С		INCLUDING THE "EXTRA POWER BOOST".
09600	0096	С	PWRCH	IS THE POWER ADDITION TO STEAM GENERATOR OUTPUT DUE
09700	0097	C	70	TO THE "EXTRA POWER BOOST". IS THE DIFFERENCE BETWEEN INLET AND OUTLET
09800	0098	CC	TD	TEMPERATURES.
09900	0099	C	TOF	IS THE OUTLET TEMPERATURE THAT THE REACTOR WOULD
10000	0100	č	101	HAVE UNDER STEADY-STATE CONDITIONS AT A GIVEN POWER
10200	0102	CCC		LEVEL.
10200	0102	č	TS	IS THE DIFFERENCE BETWEEN THE OUTLET TEMPERATURE
10400	0104	č	10	THAT THE REACTOR WOULD HAVE UNDER STEADY-STATE
10500	0105	č		CONDITIONS AT A GIVEN POWER LEVEL AND THE ACTUAL
10600	0106	č		TEMPERATURE.
10700	0107			
10800	0108			
10900	0109			
11000	0110		IF (K .NE. 2) GO TO 10
11100	0111	C		EMENT WILL JUMP THE PROGRAM OVER THE INITIALIZATIONS
11200	0112	C	AT ALL TIMES E)	KCEPT DURING THE FIRST 0.2 SECONDS.
11300	0113	6	UEDE 105 3	
11400	0114	С	HERE ARE	THE INITIALIZATIONS.

e

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	AR = 22400.0 CPTM = 2.545E08 DENTH = 0.0 DHFG = 1901744.167 DTSD = 0.0 DTSGD = 0.0 DTU = 0.0 MDOTS = N10 / DHFG MDOTSF = 1577.720759 MDOTCA = 0.0 MMSG = 43000.0 PSS = 6205550.04 PWR = N10 PWRCH = 0.0 T11 = -(28.45*5.0/9.0) * N10 / 3.0E09 + (565.0*5.0/9.0) T0 = T01 - T11 WDOTS = MDOTS X = 1
14000 0140	10 CONTINUE
14100 0141 C 14200 0142 C 14300 0143 C 14400 0144 C 14500 0145 C 14600 0146 C 14700 0147 C 14800 0148	SINCE THERE IS NO POINT IN EXECUTING THE MAIN BODY OF THE PROGRAM AS LONG AS THE DELAYED REACTOR OUTPUT TEMPERATURES ARE NOT ARRIVING AT THE STEAM GENERATOR, THESE STATEMENTS DEFINE NORMAL DMTN OUTPUT QUANTITIES AS ZERO, AND THEN SKIP OVER THE MAIN BODY OF DMTN TO THE RETURN STATEMENT. THIS WILL CONTINUE UNTIL REACTOR OUTPUT STARTS ARRIVING. HOWEVER, IF A THROTTLE VALVE PERTURBATION IS SPECIFIED, NONE OF THIS APPLIES.
14900 0149 15000 0150 15100 0151 15200 0152	IF (K.LE. 26) DTS (K) = 0.0 IF (K.LE. 26) DTSG(K) = 0.0 IF (K.LE. 26) DTI (K) = 0.0 IF (K.LE. 26) GO TO 50
	15 CONTINUE
15500 0155 15600 0156 C 15700 0157 C 15800 0158	
15900 0159 16000 0160 16100 0161	TOF = $((28.45 * 5.0 * RP(K-25)) / (9.0 * 3.0E09)) + (565.0 * 5.0 / 9.0)$ TS = $(TO1 + DTO(K-25)) - TOF$
16200 0162 16300 0163 C 16400 0164 C 16500 0165 C 16600 0166 C 16700 0167 C 16800 0168 C 16900 0169	DUE TO THE FACT THAT POWER JUMPS IN THE REACTOR CAN OCCUR MUCH MORE QUICKLY THAN THE RESULTING TEMPERATURE CHANGES, IT IS POSSIBLE THAT THE VARIABLE TS CAN ASSUME AN OPPOSITE SIGN FROM THE POWER CHANGE. SINCE THIS DOES NOT HAPPEN IN THE "REAL' WORLD", THIS COMMAND WILL AUTOMATICALLY RESET TS TO EQUAL ZERO IF THIS SITUATION ARISES EARLY IN THE RUN.
17000 0170 17100 0171	<pre>IF ((K .LE. 35) .AND. (((DTO(K-25).GT.0.0).AND.(TS.LT.0.0)) + .OR. ((DTO(K-25).LT.0.0).AND.(TS.GT.0.0))))</pre>

17200 0172 TS 0.0 = 17300 0173 + LMTD 17400 0174 17500 0175 + 235.0))) 17600 0176 0177 17700 IF ZZ = 1, THE STEAM GENERATOR VALVE OPENING FRACTION IS PERMENENTLY FIXED. BASED SOLELY UPON THE RESULTING MASS FLOW RATE, LMTD AND HS WILL BE COMPUTED, AND SO WILL THE REACTOR INLET TEMP-ERATURE. THIS WILL TEST LOAD FOLLOWING WITHIN THE REACTOR. 17800 0178 C 17900 0179 С 18000 0180 C C 0181 18100 0182 18200 IF (ZZ .EQ. 1) MDOTS = VO * MDOTSF HS = 9.72604376 * ((MDOTS + MDOTCA) ** 0.806) MDOTS = VO * MDOTSF 18300 0183 18400 0184 18500 0185 18600 0186 IF(X.GE. 20) H = 0.218700 0187 18800 0188 HERE, ARBITRARILY SHORT TIME STEPS ARE TAKEN DURING THE FIRST 0.2 SECONDS, FOR THE SAME REASON AS IN GALBA. 18900 0189 С 19000 0190 C 19100 0191 IF (K .NE. 26) GO TO 30 19200 0192 20 1 F (X .LE. 10) GO TO 21 19300 0193 0194 IF (X .LE. 19) GO TO 22 19400 GO TO 23 1 F (X .LE. 20) 19500 0195 0.001 19600 0196 21 н = 19700 0197 X = X + 1 GO TO 25 19800 0198 0.01 19900 0199 22 н = X = X + 1 0200 20000 GO TO 25 20100 0201 н 0.1 20200 0202 23 = X + 1 20300 0203 X -0204 20400 20500 0205 HERE, THE COUPLED EQUATIONS ARE SOLVED AND THE OUTPUT QUANTI-TIES SUCH AS POWER AND REACTOR INLET TEMPERATURE ARE COMPUTED. TH NUMBER 50600.0 ARISES FROM THE FACT THAT EVERY DEGREE TEMPERATURE CHANGE ON THE SECONDARY SIDE REQUIRES 50600.0 J OF ENERGY PER KG. С 20600 0206 THE 20700 0207 С 0208 C 20800 С 20900 0209 21000 0210 (H / (MMSG * CPPAV)) * (((CPPAV * MDOTP) * (DTO(K-25) + TD)) - (HS * AR * (DTSGD + LMTD + 25 DTSGD 21100 0211 = 0212 + 21200 DTSGD DTSD))) 21300 0213 + (H / CPTM) * ((HS * AR * (DTSGD + LMTD - DTSD)) (MDOTS + MDOTCA) * DHFG)) 21400 0214 DTSD = 21500 0215 + -(0216 DENTH 50600.0 * DTSD 21600 = 50600.0 * H * (MDOTCA - MDOTCO) * DHFG / CPTM 21700 0217 DENTC = DENTC + TDENTH MDOTCA * (TDENTH + DHFG) 21800 TDENTH 0218 = 21900 0219 PWRCH = MDOTCA * (TDENTH + DHFG) MDOTS * (DENTH + DHFG) + PWRCH 5509154.5 + (77756.49 * DTSD) + (772.747 - (1.006 * DTSD))) 22000 0220 PWR = (538137557.7 / 22100 0221 PS = 22200 0222 PS 22300 DPS - PSS 0223 = / PSS S + D 0224 22400 DVO DPS = 22500 0225 VO = VOSS + DVO * MDOTSF 22600 0226 MDOTS = VO 22700 IF (X .LE. 20) GO TO 20 0227 DTSG(K) 22800 0228 DTSGD =

22900 23000	0229	DTS (K) = DTSD GO TO 40
23100 23200	0231	
23300	0233	C HERE, THE COUPLED EQUATIONS ARE SOLVED AND THE OUTPUT QUANTI-
23400	0234	C TIES SUCH AS POWER AND REACTOR INLET TEMPERATURE ARE COMPUTED. THE
23500	0235	C NUMBER 50600.0 ARISES FROM THE FACT THAT EVERY DEGREE TEMPERATURE
23600	0236	C CHANGE ON THE SECONDARY SIDE REQUIRES 50600.0 J OF ENERGY PER KG.
23700	0237	
23800	0238	30 DTSG(K) = (H / (MMSG * CPPAV)) * (((CPPAV * MDOTP) * + (DTO(K-25) + TD - DTI(K-1))) - (HS * AR * (DTSG(K-1))
24000	0240	+ LMTD - DTS($K-1$))) + DTSG($K-1$)
24100	0241	DTS (K) = (H / CPT ^M) * ((HS * AR * (DTSG(K-1) + LMTD))
24200	0242	+ - (MDOTS + MLOTCA) * DHFG)
24300	0243	DENTH = 50600.0 * DTS(K)
24400	0244	DENTC = 50600.0 * H * (MDOTCA - MDOTCO) * DHFG / CPTM
24500	0245	TDENTH = DENTC + TDENTH
24600	0246	PWRCH = MDOTCA * (TDENTH + DHFG) PWR = MDOTS * (DENTH + DHFG) + PWRCH
24800	0247	PWR = MDOTS * (DENTH + DHFG) + PWRCH IF (ZZ .EQ. 1) GO TO 40
24900	0249	PS = 5509154.5 + (77756.49 * DTS(K-1)) + (538137557.7/
25000	0250	+ $(772.747 - (1.006 + DTS(K-1))))$
25100	0251	DPS = PS - PSS
25200	0252	DVO = DPS / PSS
25300	0253	VO = VO + DVO
25400	0254	MDOTS = VO * MDOTSF
25500 25600	0255	MDOTS = (PWR - PWRCH) / DHFG $40 DTI (k) = 2.0 * DTSG(k) - DTO(k-25)$
25700	0257	STMGEN = MDOTS + (DENTH + DHFG) + PWRCH
25800	0258	MDOTCO = MDOTCA
25900	0259	MDOTCA = 49.9035 * TS
26000	0260	IF $(ZZ . EQ. 1)$ MDOTCA = 0.0
26100	0261	50 RETURN
26200	0262	END

· . .

GRAPHICS SUBROUTINE

00050	0001	с	GRAPHICS SUBROUTINE	
00050 0001 00100 0002 00150 0003 00200 0004 00250 0005 00300 0006 00350 0007 00400 0008 00450 0009 00550 0010 00550 0011 00600 0012 00650 0013 00700 0014 00750 0015 00800 0016 00850 0017	000000000000000000000000000000000000000	THIS IS THE SUBROUTINE THAT DOES THE GRAPHICS. THERE ARE THREE DISPLAYS, AND THE USER CAN SELECT EACH OF THEM SUCCESSIVELY. ANY OF THE DISPLAYS CAN ALSO BE ENLARGED. THE FIRST DISPLAY DEPICTS POWER LEVELS THAT OF THE REACTOR AND THAT OF THE STEAM STEAM GENERATOR. THE SECOND DISPLAY SHOWS FUEL TEMPERATURE, AND THE THIRD SHOWS CHANGE IN REACTOR OUTLET AND INLET TEMPERATURES. AND CHANGE IN AVERAGE MODERATOR TEMPERATURE, FROM THE STEADY-STATE. A HARD COPY CAPABILITY ALSO EXISTS, AND THIS SUBROUTINE (CALLED VESPASIAN) ALLOWS THE USER TO SELECT THIS AT HIS OR HER DISCRETION. THE GRAPHICS SYSTEM USED IS THE PLOT 10 SYSTEM OF THE INTERGRAPHICS LIBRARY. MOST OF THE BULK OF VESPASIAN CONCERNS ITSELF WITH THE "PACKAGING" OF THE OUTPUT. THE OUTPUT ITSELF COMES FROM THE "CALL POLY" STATEMENTS, WHICH DRAW THE ARRAYS INTO WHICH THE OUTPUT WAS PREVIOUSLY ARRANGED BY NERO AND THE OTHER SUBROUTINES.		
00900	0018		SUBROUTINE VESPASIAN	
00950	0019		COMMON AA, ADTI, ADTO, ALPHF, ALPHM, CPPAV, CS, DN1, DRO, + DTF, DTI, DTM. DTO. DTS. DTSG, EIG, F, H, IS, K. KF.	
01000	0020		+ IND. MDOTP. NK. NN. N10, Q, PJ, PT, RHO, RT, RTR,	
01100	0022		+ RP, STMG, STMGEN, TAU, TAUC, TF1, TM, TT, TTOT, VO,	
01150	0023		+ VOSS, Y, ZZ REAL AA, ALPHF. ALPHM. CPPAV, DN1, DR0, H, MDOTP, N10, RH0,	
01200	0024		+ RIR STMGEN, TAU, TAUC, TF1, TM1, TIOT, VO, VOSS, Y	
01300	0026		INTEGER CS DE ELG E LS. J. K. KE. LND. NK. NN. PJ. Q. KL.	
01350	0027		+ PL, INT1, INT2, INT3, INT4, INT5, INT6, REP, IY, ZZ	
01400	0028		REAL ER, LOWF, LOWF, LOWT, MIDF, MIDF, MIDT, TNX, TNY REAL RSHA, LXF, LXP, LXT, HXF, HXP, HXT, MDF, MDP, MDT, TSF.	
01450	0029		+ TSP, TST	
01550	0031		REAL ADTI(1510), ADTO(1510), DTF(1510), DTI(1510), DTM(1510),	r.
01600	0032		+ DTO (1510), DTSG(1510), DTS(1510), RP (1510), TT (1510),	F.
01650	0033		+ PT (1510), STMG(1510) REAL DTIV(1540), TMPF(1510)	
01750	0035		DIMENSION POST(9), NEGT(9), TIME(4),	
01800	0036		+ FT (16). HIFT(9), MDFT(9), TMC(19), TOC(19), TIC(19),	
01850	0037		+ LPWR(7), MPWR(7), ZERO(1), TEN(2), TWNT(2), THRT(2), + FORT(2), FFTY(2), SIXT(2), DNIG(22), STM(22), SP(1),	
01900	0038		+ MW(2) DEG(5)	
02000	0040			
02050	0041			
02100	0042		TMC //M' O' D' ' T	
02200	0044		+ 'M', 'P', '', 'C', 'H', 'A', 'N', 'G', 'E',	
02250	0045		+ + TOC /'O'. 'U'. 'T'. 'L'. 'E'. 'T'. '. 'T'. 'E'.	
02300 02350	0046		+ TOC /'O', 'U', 'T', 'L', 'E', 'T', ', 'T', 'E', + 'M', 'P', '', 'C', 'H', 'A', 'N', 'G', 'E',	
02400	0048		+ ':'/.	
02450	0049		+ TIC /'1', 'N', 'L', 'E', 'T', ', 'T', 'E', + 'M', 'P', '', 'C', 'H', 'A', 'N', 'G', 'E',	
02500	0050		+ 'M', 'P', '', 'C', 'H', 'A', 'N', 'G', 'E',	
02550	0051		FT /'F', 'U', 'E', 'L', '', 'T', 'E', 'M', 'P',	
02650	0053			
02700	0054		+ HIFT / 6', '0', '0', 'D', 'E', 'G', ', 'C'/,	
02750 02800	0055		DATA INTO (111 101 101 101 111 101 101)	
02850	0057		+ MPWR /'2', '0', '0', '0', '', 'M', 'W'/,	

.

02900 02950 03000 03150 03150 03200 03250	0058 0059 0060 0061 0062 0063 0064 0065		<pre>+ ZERO /'0'/, TEN/'0', '0'/, TWNT/'2', '0'/. + THRT /'3', '0'/, FORT/'4', '0'/, FFTY/'5', '0'/, + SIXT /'6', '0'/, MW/'M', 'W'/, SP/''/, DEG /'D', 'E', 'G', ''C'/, SP/''/, + DN1G /'R', 'E', 'A', 'C', 'T', '0', 'R', '', '', + STM /'S', 'T', 'R', ':'/, 'G', 'E', 'N', ', + STM /'S', 'T', 'P', 'U', 'T', ', 'P', '0',</pre>
03300	0066		+ STM /'S', 'T', 'M', 'P', 'U', 'G', 'E', 'N', ','
03350	0067		+ 'O', 'U', 'T', 'P', 'U', 'T', '', 'P', 'O',
03400	0068		+ 'W', 'E', 'R', ':'/
03450	0069		T11 = $(565.0*5.0/9.0) - (28.45*5.0/9.0) * (N10 / 3.0E09)$
03500	0070		T01 = $(565.0*5.0/9.0) + (28.45*5.0/9.0) * (N10 / 3.0E09)$
03550	0071		REP = 2
03600	0072		ER = 1.0
03650	0073		MDT = 0.0
03700	0074		LXP = 0.0
03750	0075		HXP = 3.0E09
03800	0076		LXF = 300.0
03850	0077		HXF = 720.0
03900	0078		LXT = -25.0
03950	0079		HXT = 25.0
04000	0080		INT1 = LND / 30.0
04050	0081		INT2 = LND / 15.0
04100	0082		INT3 = LND / 10.0
04150 04200	0083		INT4 = LND / 7.5 INT5 = LND / 6.0
04250 04300 04350	0085 0086 0087		RSHA = LND / 5.0 DO 10 I = 1, LND
04400 04450 04500	0088 0089 0090	10	TMPF(I) = TF1 + DTF(I) CONTINUE
04550 04600 04650 04700	0091 0092 0093 0094	20 30	WRITE (6, 30) FORMAT (X, 'YOU HAVE SELECTED GRAPHICS. SINCE THIS + IS SO, THERE ARE A FEW') WRITE (6, 40)
04750	0095	40	FORMAT (X, ' THINGS YOU MUST KNOW. FIRST, THREE
04800	0096		+ DIFFERENT PLOTTING WINDOWS WILL')
04850	0097		WRITE (6, 50)
04900	0098	50	FORMAT (X, 'BE SUCCESSIVELY DISPLAYED. TO TRANSFER
04950	0099		+ FROM ONE WINDOW TO ANOTHER,')
05000	0100		WRITE (6, 60)
05050	0101 0102	60	FORMAT (X, ' PRESS <ret>. ANY TIME THE "ACTION" + STOPS, IT CAN BE RESUMED BY')</ret>
05150	0103	70	WRITE (6, 70)
05200	0104		FORMAT (X, ' PRESSING <ret>. YOU CAN ALSO, AFTER THE</ret>
05250	0105		+ INITIAL DISPLAY, EXPAND THE')
05300	0106		WRITE (6, 80)
05350	0107	80	FORMAT (X, ' DISPLAY IN ORDER TO SHOW CONTRASTS
05400	0108		+ BETTER. SECOND, IN ORDER TO')
05450	0109		WRITE (6, 90)
05500	0110	90	FORMAT (X, ' CLEAR THE GRAPHICS DISPLAYS AFTER THE
05550	0111		+ PROGRAM STOPS EXECUTING AND')
05600	0112		WRITE (6, 100)
05650 05700	0113 0114	100	

05750	0115		WRITE (6, 110)
	0116	110	WRITE (6, 110) FORMAT (X, ' COMMAND MODE (AFTER THE "FORTRAN STOP"
05800	0117		+ MESSAGE APPEARS ON THE 1
05850	Contraction and August		WRITE (6, 120) FORMAT (X, 'SCREEN), WRITE IN THE STATEMENT "@
05900	0118	100	CODEEN) WRITE IN THE STATEMENT "@
05950	0119	120	FORMAT (A. SUPER), WATE THE THE STATEMENT S
06000	0120		+ GRAPHICS: CLEAR" (WITHOUT')
06050	0121		WRITE (6, 130) FORMAT (X, ' THE QUOTATION MARKS). YOU MUST BE ON A
06100	0122	130	FORMAT (X, ' THE QUOTATION MARKS). YOU MUST BE ON A
06150	0123		+ TEKTRONICS TERMINAL.')
06200	0124		UDITE 16 1001
	0125	140	FORMAT ('O' ' THIRD: DO YOU WANT 4662 COPY
06250		140	FORMAT ('0', ' THIRD: DO YOU WANT 4662 COPY + CAPABILITY OR NOT? IF SO, TYPE IN 1;')
06300	0126		The second
06350	0127	1212/20	WRITE (6, 150)
06400	0128	150	FORMAT (X. ' IF NOT, 2')
06450	0129		READ 160, PL
06500	0130	160	FORMAT (11)
06550	0131		
06600	0132		IF ((PL .EQ. 1) .OR. (PL .EQ. 2)) GO TO 190
06650	0133		
			VELTE (6 170)
06700	0134	170	WRITE (6, 170) FORMAT (X, ' YOU HAVE TYPED IN A NUMBER THAT CANNOT + BE UTILIZED. YOU WILL HAVE')
06750	0135	170	FORMAT (X, YOU HILL HOVEL)
06800	0136		+ BE UTILIZED. YOU WILL HAVE)
06850	0137		WRITE (6, 180) FORMAT (X, ' TO TRY AGAIN.')
06900	0138	180	FORMAT (X, ' TO TRY AGAIN.')
06950	0139		
07000	0140		GO TO 20
07050	0141		
	0142	190	CONTINUE
07100		The second second	
07150	0143	200	
07200	0144	210	FORMAT (1. AS CORRENTLY SET UP, REACTOR THEET
07250	0145		+ TEMPERATURE IS PLOTTED AS OF THE')
07200			
07300	0146		WRITE (0, 220)
07300	0146	220	FORMAT (X, ' MOMENT IT IS CREATED IN THE STEAM
07350	0147	220	FORMAT (X, ' MOMENT IT IS CREATED IN THE STEAM + GENERATOR, HOWEVER, A GIVEN INLET')
07350 07400	0147 0148	220	WRITE (6, 220) FORMAT (X, ' MOMENT IT IS CREATED IN THE STEAM + GENERATOR. HOWEVER, A GIVEN INLET') WRITE (6, 230)
07350 07400 07450	0147 0148 0149	220	WRITE (6, 220) FORMAT (X, MOMENT IT IS CREATED IN THE STEAM + GENERATOR. HOWEVER, A GIVEN INLET') WRITE (6, 230) FORMAT (X, TEMPERATURE CHANGE DOES NOT AFFECT
07350 07400 07450 07500	0147 0148 0149 0150	230	WRITE (6, 230) FORMAT (X, ' TEMPERATURE CHANGE DOES NOT AFFECT
07350 07400 07450 07500 07550	0147 0148 0149 0150 0151	230	WRITE (6, 230) FORMAT (X, ' TEMPERATURE CHANGE DOES NOT AFFECT + REACTOR TEMPERATURES UNTIL AFTER SIX')
07350 07400 07450 07500 07550 07600	0147 0148 0149 0150 0151 0152	230	WRITE (6, 230) FORMAT (X, ' TEMPERATURE CHANGE DOES NOT AFFECT + REACTOR TEMPERATURES UNTIL AFTER SIX') WRITE (6, 240)
07350 07400 07450 07500 07550 07600 07650	0147 0148 0149 0150 0151 0152 0153	230 240	WRITE (6, 230) FORMAT (X, 'TEMPERATURE CHANGE DOES NOT AFFECT + REACTOR TEMPERATURES UNTIL AFTER SIX') WRITE (6, 240) FORMAT (X, 'SECONDS AFTER ITS CREATION. IN ORDER
07350 07400 07450 07500 07550 07600 07650 07700	0147 0148 0149 0150 0151 0152 0153 0154	230 240	WRITE (6, 230) FORMAT (X, 'TEMPERATURE CHANGE DOES NOT AFFECT + REACTOR TEMPERATURES UNTIL AFTER SIX') WRITE (6, 240) FORMAT (X, 'SECONDS AFTER ITS CREATION. IN ORDER + TO DEPICT REACTOR TEMPERATURE')
07350 07400 07450 07500 07550 07600 07650	0147 0148 0149 0150 0151 0152 0153 0154 0155	230 240	WRITE (6, 230) FORMAT (X, 'TEMPERATURE CHANGE DOES NOT AFFECT + REACTOR TEMPERATURES UNTIL AFTER SIX') WRITE (6, 240) FORMAT (X, 'SECONDS AFTER ITS CREATION. IN ORDER + TO DEPICT REACTOR TEMPERATURE') WRITE (6, 250)
07350 07400 07450 07500 07550 07600 07650 07700	0147 0148 0149 0150 0151 0152 0153 0154	230 240 250	WRITE (6, 230) FORMAT (X, 'TEMPERATURE CHANGE DOES NOT AFFECT + REACTOR TEMPERATURES UNTIL AFTER SIX') WRITE (6, 240) FORMAT (X, 'SECONDS AFTER ITS CREATION. IN ORDER + TO DEPICT REACTOR TEMPERATURE') WRITE (6, 250) FORMAT (X, 'CHANGES AT THE SAME TIME THAT THE INLET
07350 07400 07450 07500 07550 07600 07650 07700 07750	0147 0148 0149 0150 0151 0152 0153 0154 0155	230 240 250	WRITE (6, 230) FORMAT (X, 'TEMPERATURE CHANGE DOES NOT AFFECT + REACTOR TEMPERATURES UNTIL AFTER SIX') WRITE (6, 240) FORMAT (X, 'SECONDS AFTER ITS CREATION. IN ORDER + TO DEPICT REACTOR TEMPERATURE') WRITE (6, 250)
07350 07400 07450 07550 07550 07600 07650 07650 07700 07750 07800 07850	0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157	230 240 250	WRITE (6, 230) FORMAT (X, TEMPERATURE CHANGE DOES NOT AFFECT + REACTOR TEMPERATURES UNTIL AFTER SIX') WRITE (6, 240) FORMAT (X, SECONDS AFTER ITS CREATION. IN ORDER + TO DEPICT REACTOR TEMPERATURE') WRITE (6, 250) FORMAT (X, CHANGES AT THE SAME TIME THAT THE INLET + TEMPERATURE CHANGES CAUSING') WRITE (6, 260)
07350 07400 07450 07550 07550 07600 07650 07750 07750 07800 07850 07850	0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158	230 240 250	WRITE (6, 230) FORMAT (X, TEMPERATURE CHANGE DOES NOT AFFECT + REACTOR TEMPERATURES UNTIL AFTER SIX') WRITE (6, 240) FORMAT (X, SECONDS AFTER ITS CREATION. IN ORDER + TO DEPICT REACTOR TEMPERATURE') WRITE (6, 250) FORMAT (X, CHANGES AT THE SAME TIME THAT THE INLET + TEMPERATURE CHANGES CAUSING') WRITE (6, 260)
07350 07400 07450 07500 07500 07600 07650 07700 07750 07750 07800 07850 07850 07900 07950	0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159	230 240 250 260	WRITE (6, 230) FORMAT (X, 'TEMPERATURE CHANGE DOES NOT AFFECT + REACTOR TEMPERATURES UNTIL AFTER SIX') WRITE (6, 240) FORMAT (X, 'SECONDS AFTER ITS CREATION. IN ORDER + TO DEPICT REACTOR TEMPERATURE') WRITE (6, 250) FORMAT (X, 'CHANGES AT THE SAME TIME THAT THE INLET + TEMPERATURE CHANGES CAUSING') WRITE (6, 260) FORMAT (X, 'THEM ENTER THE REACTOR, TYPE IN 1.
07350 07400 07450 07500 07550 07600 07650 07700 07700 07750 07800 07850 07900 07950 08000	0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159 0160	230 240 250 260	WRITE (6, 230) FORMAT (X, 'TEMPERATURE CHANGE DOES NOT AFFECT + REACTOR TEMPERATURES UNTIL AFTER SIX') WRITE (6, 240) FORMAT (X, 'SECONDS AFTER ITS CREATION. IN ORDER + TO DEPICT REACTOR TEMPERATURE') WRITE (6, 250) FORMAT (X, 'CHANGES AT THE SAME TIME THAT THE INLET + TEMPERATURE CHANGES CAUSING') WRITE (6, 260) FORMAT (X, 'THEM ENTER THE REACTOR, TYPE IN 1. + OTHERWISE THE INLET TEMPERATURE')
07350 07400 07450 07550 07600 07650 07650 07700 07750 07800 07850 07850 07900 07950 08000 08050	0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159 0160 0161	230 240 250 260	WRITE (6, 230) FORMAT (X, 'TEMPERATURE CHANGE DOES NOT AFFECT + REACTOR TEMPERATURES UNTIL AFTER SIX') WRITE (6, 240) FORMAT (X, 'SECONDS AFTER ITS CREATION. IN ORDER + TO DEPICT REACTOR TEMPERATURE') WRITE (6, 250) FORMAT (X, 'CHANGES AT THE SAME TIME THAT THE INLET + TEMPERATURE CHANGES CAUSING') WRITE (6, 260) FORMAT (X, 'THEM ENTER THE REACTOR, TYPE IN 1. + OTHERWISE THE INLET TEMPERATURE') WRITE (6, 270)
07350 07400 07450 07550 07550 07600 07650 07700 07750 07800 07850 07850 07950 07950 08000 08050 08100	0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159 0160 0161 0162	230 240 250 260	WRITE (6, 230) FORMAT (X, TEMPERATURE CHANGE DOES NOT AFFECT + REACTOR TEMPERATURES UNTIL AFTER SIX') WRITE (6, 240) FORMAT (X, SECONDS AFTER ITS CREATION. IN ORDER + TO DEPICT REACTOR TEMPERATURE') WRITE (6, 250) FORMAT (X, CHANGES AT THE SAME TIME THAT THE INLET + TEMPERATURE CHANGES CAUSING') WRITE (6, 260) FORMAT (X, THEM ENTER THE REACTOR, TYPE IN 1. + OTHERWISE THE INLET TEMPERATURE') WRITE (6, 270) FORMAT (X, CHANGES WILL BE PLOTTED AS OF THE MOMENT
07350 07400 07450 07550 07550 07600 07650 07750 07850 07850 07850 07850 07900 07950 08000 08050 08050 08150	0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159 0160 0161 0162 0163	230 240 250 260	WRITE (6, 230) FORMAT (X, 'TEMPERATURE CHANGE DOES NOT AFFECT + REACTOR TEMPERATURES UNTIL AFTER SIX') WRITE (6, 240) FORMAT (X, 'SECONDS AFTER ITS CREATION. IN ORDER + TO DEPICT REACTOR TEMPERATURE') WRITE (6, 250) FORMAT (X, 'CHANGES AT THE SAME TIME THAT THE INLET + TEMPERATURE CHANGES CAUSING') WRITE (6, 260) FORMAT (X, 'THEM ENTER THE REACTOR, TYPE IN 1. + OTHERWISE THE INLET TEMPERATURE') WRITE (6, 270) FORMAT (X, 'CHANGES WILL BE PLOTTED AS OF THE MOMENT
07350 07400 07450 07500 07500 07600 07650 07700 07750 07750 07850 07850 07900 07850 07900 07950 08050 08050 08150 08150 08200	0147 0148 0149 0150 0151 0152 0153 0154 0155 0155 0156 0157 0158 0159 0160 0161 0162 0163 0164	230 240 250 260 270	WRITE (6, 230) FORMAT (X, 'TEMPERATURE CHANGE DOES NOT AFFECT + REACTOR TEMPERATURES UNTIL AFTER SIX') WRITE (6, 240) FORMAT (X, 'SECONDS AFTER ITS CREATION. IN ORDER + TO DEPICT REACTOR TEMPERATURE') WRITE (6, 250) FORMAT (X, 'CHANGES AT THE SAME TIME THAT THE INLET + TEMPERATURE CHANGES CAUSING') WRITE (6, 260) FORMAT (X, 'THEM ENTER THE REACTOR, TYPE IN 1. + OTHERWISE THE INLET TEMPERATURE') WRITE (6, 270) FORMAT (X, 'CHANGES WILL BE PLOTTED AS OF THE MOMENT + OF THEIR CREATION, WHICH')
07350 07400 07450 07500 07550 07600 07650 07700 07750 07800 07850 07900 07950 08000 08050 08100 08100 08100 08150 08250	0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159 0160 0161 0162 0163 0164 0165	230 240 250 260 270	WRITE (6, 230) FORMAT (X, 'TEMPERATURE CHANGE DOES NOT AFFECT + REACTOR TEMPERATURES UNTIL AFTER SIX') WRITE (6, 240) FORMAT (X, 'SECONDS AFTER ITS CREATION. IN ORDER + TO DEPICT REACTOR TEMPERATURE') WRITE (6, 250) FORMAT (X, 'CHANGES AT THE SAME TIME THAT THE INLET + TEMPERATURE CHANGES CAUSING') WRITE (6, 260) FORMAT (X, 'THEM ENTER THE REACTOR, TYPE IN 1. + OTHERWISE THE INLET TEMPERATURE') WRITE (6, 270) FORMAT (X, 'CHANGES WILL BE PLOTTED AS OF THE MOMENT + OF THEIR CREATION, WHICH')
07350 07400 07450 07500 07500 07600 07650 07700 07750 07750 07850 07850 07900 07850 07900 07950 08050 08050 08150 08150 08200	0147 0148 0149 0150 0151 0152 0153 0154 0155 0155 0156 0157 0158 0159 0160 0161 0162 0163 0164	230 240 250 260 270	WRITE (6, 230) FORMAT (X, TEMPERATURES UNTIL AFTER SIX') WRITE (6, 240) FORMAT (X, SECONDS AFTER ITS CREATION. IN ORDER + TO DEPICT REACTOR TEMPERATURE') WRITE (6, 250) FORMAT (X, CHANGES AT THE SAME TIME THAT THE INLET + TEMPERATURE CHANGES CAUSING') WRITE (6, 260) FORMAT (X, THEM ENTER THE REACTOR, TYPE IN 1. + OTHERWISE THE INLET TEMPERATURE') WRITE (6, 270) FORMAT (X, CHANGES WILL BE PLOTTED AS OF THE MOMENT + OF THEIR CREATION, WHICH') WRITE (6, 280) FORMAT (X, IS 6 SECONDS BEFORE THEY ARRIVE AT THE
07350 07400 07450 07500 07550 07600 07650 07700 07750 07800 07850 07900 07950 08000 08050 08100 08100 08100 08150 08250	0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159 0160 0161 0162 0163 0164 0165	230 240 250 260 270	WRITE (6, 230) FORMAT (X, TEMPERATURES UNTIL AFTER SIX') WRITE (6, 240) FORMAT (X, SECONDS AFTER ITS CREATION. IN ORDER + TO DEPICT REACTOR TEMPERATURE') WRITE (6, 250) FORMAT (X, CHANGES AT THE SAME TIME THAT THE INLET + TEMPERATURE CHANGES CAUSING') WRITE (6, 260) FORMAT (X, THEM ENTER THE REACTOR, TYPE IN 1. + OTHERWISE THE INLET TEMPERATURE') WRITE (6, 270) FORMAT (X, CHANGES WILL BE PLOTTED AS OF THE MOMENT + OF THEIR CREATION, WHICH') WRITE (6, 280) FORMAT (X, IS 6 SECONDS BEFORE THEY ARRIVE AT THE
07350 07400 07450 07550 07550 07600 07650 07700 07850 07850 07850 07850 07950 08050 08050 08150 08150 08250 08250 08250 08350	0147 0148 0149 0151 0152 0153 0154 0155 0155 0157 0158 0159 0161 0162 0163 0164 0165 0165 0165 0166 0167	230 240 250 260 270 280	WRITE (6, 230) FORMAT (X, TEMPERATURES UNTIL AFTER SIX') WRITE (6, 240) FORMAT (X, SECONDS AFTER ITS CREATION. IN ORDER + TO DEPICT REACTOR TEMPERATURE') WRITE (6, 250) FORMAT (X, CHANGES AT THE SAME TIME THAT THE INLET + TEMPERATURE CHANGES CAUSING') WRITE (6, 260) FORMAT (X, THEM ENTER THE REACTOR, TYPE IN 1. + OTHERWISE THE INLET TEMPERATURE') WRITE (6, 270) FORMAT (X, CHANGES WILL BE PLOTTED AS OF THE MOMENT + OF THEIR CREATION, WHICH') WRITE (6, 280) FORMAT (X, IS 6 SECONDS BEFORE THEY ARRIVE AT THE
07350 07400 07450 07550 07550 07600 07650 07750 07850 07850 07850 07850 07850 07850 07900 07850 07900 07950 08050 08050 08150 08250 08250 08250 08350 08350 08400	0147 0148 0149 0151 0152 0153 0154 0155 0155 0155 0157 0158 0159 0160 0161 0162 0163 0164 0165 0166 0166 0166 0168	230 240 250 260 270 280	WRITE (6, 230) FORMAT (X, 'TEMPERATURE CHANGE DOES NOT AFFECT + REACTOR TEMPERATURES UNTIL AFTER SIX') WRITE (6, 240) FORMAT (X, 'SECONDS AFTER ITS CREATION. IN ORDER + TO DEPICT REACTOR TEMPERATURE') WRITE (6, 250) FORMAT (X, 'CHANGES AT THE SAME TIME THAT THE INLET + TEMPERATURE CHANGES CAUSING') WRITE (6, 260) FORMAT (X, 'THEM ENTER THE REACTOR, TYPE IN 1. + OTHERWISE THE INLET TEMPERATURE') WRITE (6, 270) FORMAT (X, 'CHANGES WILL BE PLOTTED AS OF THE MOMENT + OF THEIR CREATION, WHICH')
07350 07400 07450 07550 07550 07600 07650 07700 07750 07850 07850 07850 07900 07850 07900 07950 08050 08050 08150 08150 08250 08350 08350 08350 08350	0147 0148 0149 0150 0151 0152 0153 0154 0155 0155 0155 0155 0158 0159 0160 0161 0163 0164 0165 0166 0166 0166 0166 0168 0169	230 240 250 260 270 280	WRITE (6, 230) FORMAT (X, 'TEMPERATURE CHANGE DOES NOT AFFECT + REACTOR TEMPERATURES UNTIL AFTER SIX') WRITE (6, 240) FORMAT (X, 'SECONDS AFTER ITS CREATION. IN ORDER + TO DEPICT REACTOR TEMPERATURE') WRITE (6, 250) FORMAT (X, 'CHANGES AT THE SAME TIME THAT THE INLET + TEMPERATURE CHANGES CAUSING') WRITE (6, 260) FORMAT (X, 'THEM ENTER THE REACTOR, TYPE IN 1. + OTHERWISE THE INLET TEMPERATURE') WRITE (6, 270) FORMAT (X, 'CHANGES WILL BE PLOTTED AS OF THE MOMENT + OF THEIR CREATION, WHICH') WRITE (6, 280) FORMAT (X, 'IS 6 SECONDS BEFORE THEY ARRIVE AT THE + INLET. FOR THIS OPTION,') WRITE (6, 290) FORMAT (X, 'TYPE IN 2.')
07350 07400 07450 07500 07500 07600 07650 07700 07750 07750 07800 07850 07900 07950 08000 08050 08050 08150 08250 08250 08350 08350 08450 08450	0147 0148 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0170	230 240 250 260 270 280 290	WRITE (6, 230) FORMAT (X, 'TEMPERATURE CHANGE DOES NOT AFFECT + REACTOR TEMPERATURES UNTIL AFTER SIX') WRITE (6, 240) FORMAT (X, 'SECONDS AFTER ITS CREATION. IN ORDER + TO DEPICT REACTOR TEMPERATURE') WRITE (6, 250) FORMAT (X, 'CHANGES AT THE SAME TIME THAT THE INLET + TEMPERATURE CHANGES CAUSING') WRITE (6, 260) FORMAT (X, 'THEM ENTER THE REACTOR, TYPE IN 1. + OTHERWISE THE INLET TEMPERATURE') WRITE (6, 270) FORMAT (X, 'CHANGES WILL BE PLOTTED AS OF THE MOMENT + OF THEIR CREATION, WHICH') WRITE (6, 280) FORMAT (X, 'IS 6 SECONDS BEFORE THEY ARRIVE AT THE + INLET. FOR THIS OPTION, ') WRITE (6, 290) FORMAT (X, 'TYPE IN 2.') READ 300, DE
07350 07400 07450 07550 07550 07600 07650 07700 07750 07850 07850 07850 07900 07850 07900 07950 08050 08050 08150 08150 08250 08350 08350 08350 08350	0147 0148 0149 0150 0151 0152 0153 0154 0155 0155 0155 0155 0158 0159 0160 0161 0163 0164 0165 0166 0166 0166 0166 0168 0169	230 240 250 260 270 280 290	WRITE (6, 230) FORMAT (X, 'TEMPERATURE CHANGE DOES NOT AFFECT + REACTOR TEMPERATURES UNTIL AFTER SIX') WRITE (6, 240) FORMAT (X, 'SECONDS AFTER ITS CREATION. IN ORDER + TO DEPICT REACTOR TEMPERATURE') WRITE (6, 250) FORMAT (X, 'CHANGES AT THE SAME TIME THAT THE INLET + TEMPERATURE CHANGES CAUSING') WRITE (6, 260) FORMAT (X, 'THEM ENTER THE REACTOR, TYPE IN 1. + OTHERWISE THE INLET TEMPERATURE') WRITE (6, 270) FORMAT (X, 'CHANGES WILL BE PLOTTED AS OF THE MOMENT + OF THEIR CREATION, WHICH') WRITE (6, 280) FORMAT (X, 'IS 6 SECONDS BEFORE THEY ARRIVE AT THE + INLET. FOR THIS OPTION,') WRITE (6, 290) FORMAT (X, 'TYPE IN 2.')

08600	0172		IF ((DE .EQ. 1) .OR. (DE .EQ. 2)) GO TO 330
08650	0173		IF ((DE .EQ. 1) .OK. (DE .EQ. 27) 00 10 500
08700	0174		
08750	0175	Cartan Concerna	WRITE (6, 310)
08800	0176	310	FORMAT (X, YOU HAVE TYPED IN A NUMBER THAT CANNOT
08850	0177		+ BE UTILIZED. YOU WILL HAVE')
08900	0178		WRITE (6, 320)
08950	0179	320	FORMAT (X, ' TO TRY AGAIN')
09000	0180	1000	
09050	0181	330	CONTINUE
	0182	330	
09100			IF (DE .EQ. 2) GO TO 350
09150	0183		IF (DE . EQ. 2) 50 10 550
09200	0184		20 3H0 L = 1 LND
09250	0185		DO 340 I = 1, LND
09300	0186		DTIV(1+29) = DTI(1)
09350	0187	340	CONTINUE
09400	0188		DO $350 I = 1,30$
09450	0189		DTIV(1) = 0.0
09500	0190	350	CONTINUE
09550	0191	0,00	DO 355 I = 1,LND
09600	0192		DTI(1) = DTIV(1)
		355	CONTINUE
09650	0193	222	Contract
09700	0194		
09750	0195		15 (D) 50 11 00 10 200
09800	0196		IF (PL .EQ. 1) GO TO 360
09850	0197		CALL GRSTRT (4051,1)
09900	0198		CALL NEWPAG
09950	0199		GO TO 370
10000	0200		
10050	0201	360	CALL GRSTRT (4662,1)
10100	0202	370	CALL VWPORT (0.0, 130.0, 0.0, 100.0)
10150	0203		CALL WINDOW (0.0, 130.0, 0.0, 100.0)
10200	0204		CALL MOVE (0.0, 25.0)
10250	0205		CALL DRAW (120.0, 25.0)
			CALL DRAW (120.0, 100.0)
10300	0206		
10350	0207		CALL DRAW (0.0, 100.0)
10400	0208		CALL DRAW (0.0, 75.0)
10450	0209		CALL DRAW (3.0, 75.0)
10500	0210		CALL MOVE (6.0, 75.0)
10550	0211		CALL TXICUR (4)
10600	0212		IF (REP . EQ. 1) GO TO 380
10650	0213		CALL TEXT (7, MPWR)
10700	0214		GO TO 390
10750	0215	380	CALL RNUMBR (MIDP, 1, 6)
10800	0216		CALL TEXT (1, SP)
10850	0217	.303	CALL TEXT (2, MW)
		390	CALL DASHPT (9)
10900	0218	390	
10950	0219		
11000	0220		CALL DRAW (120.0, 75.0)
11050	0221		CALL MOVE (0.0, 75.0)
11100	0222		CALL DASHPT (0)
11150	0223		CALL DRAW (0.0, 50.0)
11200	0224		CALL DRAW (3.0, 50.0)
11250	0225		CALL MOVE (6.0. 50.0)
11300	0226		IF (REP . EQ. 1) GO TO 400
11350			CALL TEXT (7, LPWR)
	11000		
	0227		
11400	0228		GO TO 410

1, CALL RNUMBR (LOWP, 6) 0229 400 11450 SP) CALL TEXT (1, 11500 2, CALL TEXT MWI 11550 0231 CALL MOVE 18.0, 50.0) (0232 410 11600 CALL DASHPT (9) 0233 11650 CALL DRAW (120.0, CALL MOVE (0.0, 50.0) 0234 11700 50.0) 11750 0235 CALL DASHPT (0)11800 0236 CALL DRAW (0.0. 25.0) 0237 11850 CALL TXICUR (2) 11900 0238 20.0 25.0) 11950 0239 CALL MOVE CALL INUMBR (INT1, 2) 0240 12000 25.0) CALL MOVE (40.0. 12050 0241 CALL INUMBR (INT2, 3) 12100 0242 25.0) 60.0 CALL MOVE (12150 0243 0244 CALL INUMBR (INT3, 31 12200 25.0) CALL MOVE (80.0, 0245 12250 CALL INUMBR (INT4, CALL MOVE (100.0, 31 0246 12300 25.0) 12350 0247 CALL INUMBR (INT5, 3) 12400 0248 0249 CALL TXICUR (3)12450 CALL MOVE (120.0. 25.0) 12500 0250 CALL INUMBR (INT6, CALL TXICUR (4) 3) 0251 12550 12600 0252 CALL MOVE 20.0) 0.0. 12650 0253 (0254 CALL TEXT 22, DN1G) 12700 45.0, 12750 0255 CALL MOVE (20.0) CALL DRAW (120.0. 20.0) 12800 0256 0257 CALL MOVE (0.0, 16.01 12850 CALL TEXT 22, 0258 STM) 12900 45.0 12950 0259 CALL MOVE 16.0) CALL DASHPT 13000 0260 (3)CALL DRAW (120.0, CALL VWPORT (0.0, 16.0) 120.0, 13050 0261 25.0, 100.0) 13100 0262 LXP, HXP) CALL WINDOW (0.0, RSHA. 13150 0263 CALL MOVE (0.0, N10) CALL POLY (LND, TT, STMG) CALL DASHPT (0) 13200 0264 13250 0265 0266 13300 RSHA / 6.0 LND / 6 STMG (TY) 13350 0267 TNX = 13400 0268 TY = 13450 0269 TNY = CALL MOVE (TNX, CALL DRAW ((TNX + (0.01250 * RSHA)), (TNY - (ER * 6.0E07))) 13500 0270 TNY) 13550 0271 CALL DRAW (TNX, CALL DRAW (TNX, CALL DRAW (TNX - (0.01250 * RSHA)), TNY) CALL DRAW (TNX - (0.01250 * RSHA)), TNY) (TNY - (ER * 6.0E07))) 13600 0272 13650 0273 13700 0274 RSHA / 3.0 LND / 3 STMG (TY) 13750 TNX = 0275 0276 TY = 13800 TNY 13850 0277 -MOVE (TNX, DRAW ((TNX + (0.01250 * RSHA)), (TNY - (ER * 6.0E07))) CALL MOVE 13900 0278 TNY) 13950 0279 CALL CALL DRAW (TNX, CALL DRAW (TNX - (0.01250 * RSHA)), TNY) CALL DRAW ((TNX - (0.01250 * RSHA)), TNY) CALL DRAW (TNX, TNX = RSHA / 2.0 TY = LND / 2 0280 14000 14050 0281 14100 0282 14150 0283 14200 0284 STMG (TY) TNY 14250 0285 =

14300 0286 14350 0287 14400 0288 14450 0289 14550 0290 14550 0291 14600 0292 14650 0293 14700 0294 14750 0295 14850 0295	CALL MOVE (TNX, (TNY - (ER * 6.0E07))) CALL DRAW ((TNX + (0.01250 * RSHA)), TNY) CALL DRAW (TNX, (TNY + (ER * 6.0E07))) CALL DRAW (TNX, (TNY - (ER * 6.0E07))) CALL DRAW (TNX, (TNY - (ER * 6.0E07))) TNX = RSHA * 2.0 / 3.0 TY = LND * 2 / 3 TNY = STMG (TY) CALL MOVE (TNX, (TNY - (ER * 6.0E07))) CALL DRAW (TNX + (0.01250 * RSHA)), TNY) CALL DRAW (TNX, (TNY + (ER * 6.0E07))) CALL DRAW (TNX, (TNY + (ER * 6.0E07))) CALL DRAW (TNX, (TNY + (ER * 6.0E07))) CALL DRAW (TNX - (0.01250 * RSHA)), TNY)
$\begin{array}{ccccccc} 14900 & 0298 \\ 14950 & 0299 \\ 15000 & 0300 \\ 15050 & 0301 \\ 15100 & 0302 \\ 15150 & 0303 \\ 15200 & 0304 \\ 15250 & 0305 \\ 15300 & 0306 \\ 15350 & 0307 \\ 15400 & 0308 \\ 15450 & 0309 \\ \end{array}$	CALL DRAW (TNX, $(TNY - (ER * 6.0E07)))$ TNX = RSHA * 5.0 / 6.0 TY = LND * 5 / 6 TNY = STMG (TY) CALL MOVE (TNX, $(TNY - (ER * 6.0E07)))$ CALL DRAW (TNX + (0.01250 * RSHA)), TNY) CALL DRAW (TNX, $(TNY + (ER * 6.0E07)))$ CALL DRAW (TNX, $(TNY - (ER * 6.0E07)))$ CALL DRAW (TNX, $(TNY - (ER * 6.0E07)))$ TNX = RSHA / 6.0 TY = LND / 6 TNY = PT (TY) CALL MOVE ((TNX - (RSHA * 0.01250)), (TNY - (ER * 6.0E07)))
15500 0310 15550 0311 15600 0312 15650 0313 15700 0314 15750 0315 15800 0316 15850 0317	CALL DRAW ((TNX + (RSHA * 0.01250)), (TNY + (ER * 6.0E07))) CALL MOVE ((TNX - (RSHA * 0.01250)), (TNY + (ER * 6.0E07))) CALL DRAW ((TNX + (RSHA * 0.01250)), (TNY - (ER * 6.0E07))) TNX = RSHA / 3.0 TY = LND / 3 TNY = PT (TY) CALL MOVE ((TNX - (RSHA * 0.01250)), (TNY - (ER * 6.0E07)))
15900 0318 15950 0319 16000 0320 16050 0321 16100 0322 16150 0323 16200 0324 16250 0325	CALL DRAW ((TNX + (RSHA * 0.01250)), (TNY + (ER * 6.0E07))) CALL MOVE ((TNX - (RSHA * 0.01250)), (TNY + (ER * 6.0E07))) CALL DRAW ((TNX + (RSHA * 0.01250)), (TNY - (ER * 6.0E07))) TNX = RSHA / 2.0 TY = LND / 2 TNY = PT (TY) CALL MOVE ((TNX - (RSHA * 0.01250)), (TNY - (ER * 6.0E07))) CALL DRAW ((TNX + (RSHA * 0.01250)), (TNY + (ER * 6.0E07)))
16300 0326 16350 0327 16400 0328 16450 0329 16500 0330 16550 0331 16650 0332 16650 0333	CALL MOVE ((TNX - (RSHA * 0.01250)), (TNY + (ER * 6.0E07))) CALL DRAW ((TNX + (RSHA * 0.01250)), (TNY - (ER * 6.0E07))) TNX = RSHA * 2.0 / 3.0 TY = LND * 2 / 3 TNY = PT (TY) CALL MOVE ((TNX - (RSHA * 0.01250)), (TNY - (ER * 6.0E07))) CALL DRAW ((TNX + (RSHA * 0.01250)), (TNY + (ER * 6.0E07))) CALL MOVE ((TNX - (RSHA * 0.01250)), (TNY + (ER * 6.0E07))) CALL MOVE ((TNX - (RSHA * 0.01250)), (TNY + (ER * 6.0E07)))
16700 0334 16750 0335 16800 0336 16850 0337 16900 0338 16950 0339 17000 0340 17050 0342	CALL DRAW ((TNX + (RSHA * 0.01250)), (TNY - (ER * 6.0E07))) TNX = RSHA * 5.0 / 6.0 TY = LND * 5 / 6 TNY = PT (TY) CALL MOVE ((TNX - (RSHA * 0.01250)), (TNY - (ER * 6.0E07))) CALL DRAW ((TNX + (RSHA * 0.01250)), (TNY + (ER * 6.0E07))) CALL MOVE ((TNX - (RSHA * 0.01250)), (TNY + (ER * 6.0E07))) CALL DRAW ((TNX + (RSHA * 0.01250)), (TNY - (ER * 6.0E07))) CALL DRAW ((TNX + (RSHA * 0.01250)), (TNY - (ER * 6.0E07))) CALL MOVE (0.0, N10)

17150	0343		CALL POLY (LND, TT, PT)
17200	0344		internet a lateral Automation of the
17250	0345		IF (PL .EQ. 1) GO TO 420
17300	0346		CALL CMCLOS
17350	0347		READ*
And the second second second second	0348		CALL CMOPEN
17400			CALL NEWPAG
17450	0349		GO TO 460
17500	0350	420	CALL GRSTOP
17550	0351	420	VIDITE 16 1201
17600	0352	430	FORMAT (X. YOU MUST NOW REMOVE THE COMPLETED
17650	0353	430	+ GRAPHICS DISPLAY, INSERT A NEW')
17700	0354		
17750	0355	1.1.0	AUERT OF BARED AND TOTALLY DECET THE
17800	0356	440	FORMAT (X, ' SHEET OF PAPER, AND TOTALLY RESET THE + 4662 PLOTTING MACHINE.')
17850	0357		
17900	0358	1.50	WRITE (6, 450) FORMAT (X. ' PRESS <ret> WHEN THIS IS DONE.')</ret>
17950	0359	450	
18000	0360	1.60	READ*
18050	0361	460	IF (REP.EQ. 1) GO TO 540
18100	0362	470	WRITE (6, 480) FORMAT (X. ' DO YOU WISH TO EXPAND THIS DISPLAY?
18150	0363	430	FORMAT (X. ' DO YOU WISH TO EXPAND THIS DISPLAY? + IF SO, TYPE IN 1; IF NOT, 2')
18200	0364		FIF SU, ITFE IN 1; IF NOT, 2)
18250	0365	1.00	READ 490, REP
18300	0366	490	FORMAT (11)
18350	0367		IF (REP.EQ. 1) GO TO 520 IF (REP.EQ. 2) GO TO 540
18400	0368		
18450	0369	FOO	WRITE (6, 500) FORMAT (X, YOU HAVE TYPED IN A NUMBER THAT CANNOT
18500	0370	500	+ BE UTILIZED. YOU WILL HAVE')
18550	0371		
18600	0372	E 10	WRITE (6, 510) FORMAT (X, TO TRY AGAIN.')
18650	0373	510	FORMAT (X. ' TO TRY AGAIN.') GO TO 470
18700	0374	520	
18750	0375	520	TSP = PT(LND) - PT(1) TSP = TSP ** 2.0
18800	0376		TSP = SQRT(TSP)
18850	0377		IF(PT(1) . LE. PT(LND)) MDP = (0.5 * TSP) + N10
18900 18950	0378 0379		IF(PT(1) .GT. PT(LND)) MDP = (0.5 * TSP) + PT(LND)
19000	0380		ER = 1.2 * TSP / 3.0E09
19100	0381		LXP = -(0.6 * TSP) + MDP
19150	0382		HXP = (0.6 * TSP) + MDP
19200	0383		LOWP = (0.4 + TSP) + LXP
19300	0384		MIDP = (0.8 * TSP) + LXP
19305	0385		IF(NK, EQ. 1) ER = ER * 2.0
19309	0386		IF(ZZ, EQ, 1) ER = ER * 4.0
19313	0387		IF (NK . EQ. 1) LXP = -(1.2 * TSP) + MDP
19317	0388		IF (NK . EQ. 1) HXP = (1.2 * TSP) + MDP
19321	0389		IF (NK . EQ. 1) LOWP = (0.8 * TSP) + LXP
19325	0390		IF (NK . EQ. 1) MIDP = (1.6 * TSP) + LXP
19329	0391		IF(ZZ, EQ, 1) LXP =-(2.4 * TSP) + MDP
19333	0392		IF(ZZ .EQ. 1) HXP = (2.4 * TSP) + MDP
19337	0393		IF(ZZ . EQ. 1) LOWP = (1.6 * TSP) + LXP
19341	0394		IF(ZZ .EQ. 1) MIDP = (3.2 * TSP) + LXP,
19345	0395		LOWP = LOWP / 1.0E06
19350	0396		MIDP = MIDP / 1.0E06
19400	0397		IF (PL .EQ. 2) GO TO 530
19450	0398		GO TO 360
19500	0399	530	

19600 0 19650 0 19700 0 19750 0	400 401 402 403 404	540	GO TO 370 REP = 2 ER = 1.0 IF (PL.EQ. 1) GO TO 550 GO TO 560
19800 0 19850 0 19950 0 20050 0 20100 0 20150 0 202050 0 202050 0 20200 0 20200 0 20200 0 20200 0 20200 0 20300 0 20300 0 20400 0 20550 0 20600 0 20700 0 20750 0 20600 0 20750 0 20700 0 20750 0 20900 0 20950 0 21050 0 21000 0 21150 0 21400 0 21550 0 21600 0 21650 0 21850 0 21900 0 21950 <	40556789001123456778900123456789001234556789001234555678900123455678900123455678900123455567890012345556789001234555678900123455567890012345556789001234555678900123455567890012345556789000000000000000000000000000000000000	550	CALL GRSTRT (4662, 1) CALL WPORT (0.0, 130.0, 0.0, 100.0) CALL WINDOW (0.0, 130.0, 0.0, 100.0) CALL DASHPT (0) CALL DRAW (120.0, 25.0) CALL DRAW (120.0, 25.0) CALL DRAW (120.0, 25.0) CALL DRAW (0.0, 25.0) CALL MOVE (20.0, 28.0) CALL MOVE (40.0, 28.0) CALL DRAW (20.0, 28.0) CALL DRAW (60.0, 30.0) CALL MOVE (60.0, 25.0) CALL DRAW (60.0, 25.0) CALL DRAW (60.0, 28.0) CALL DRAW (100.0, 28.0) CALL DRAW (100.0, 28.0) CALL MOVE (100.0, 28.0) CALL MOVE (100.0, 28.0) CALL TXICUR (7) CALL TXICUR (7) CALL TXICUR (7) CALL TXICUR (8) CALL MOVE (20.0, 24.0) CALL TXICUR (8) CALL MOVE (40.0, 24.0) CALL TXICUR (8) CALL NUMBR (1NT1, 2) CALL MOVE (60.0, 24.0) CALL INUMBR (1NT2, 3) CALL MOVE (60.0, 24.0) CALL INUMBR (1NT4, 3) CALL MOVE (100.0, 24.0) CALL INUMBR (1NT5, 3) CALL MOVE (100.0, 24.0) CALL INUMBR (1NT5, 3) CALL MOVE (100.0, 24.0) CALL INUMBR (1NT6, 3) CALL MOVE (20.0, 78.571) CALL MOVE (6.0, 78.571) CALL TXICUR (4) CALL MOVE (6.0, 78.571) CALL TXICUR (4) CALL MOVE (6.0, 78.571) CALL MOVE (6.0, 78.571) CALL TXICUR (4) CALL MOVE (6.0, 78.571) CALL TXICUR (7) CALL TXICUR (7) CALL TXICUR (7) CALL TXIC
22250 0 22300 0	1453 1454 1455 1456	570 580	CALL RNUMBR (MIDF, 1, 5) CALL TEXT (5, DEG) CALL MOVE (30.0, 78.571) CALL DASHPT (9)

•

22400 22450 22550 22600 22600 22700 22750 22800 22850 22900 22950 23000	0457 0458 0459 0460 0461 0462 0463 0464 0465 0465 0465 0466 0467 0468 0469	590 600	CALL DRAW (120.0, 78.571) CALL MOVE (0.0, 51.786) CALL DASHPT (0) CALL DRAW (3.0, 51.786) CALL MOVE (6.0, 51.786) IF (REP .EQ. 1) GO TO 590 CALL TEXT (9, MDFT) GO TO 600 CALL RNUMBR (LOWF, 1, 5) CALL TEXT (5, DEG) CALL MOVE (30.0, 51.786) CALL DASHPT (9) CALL DRAW (120.0, 51.786)
23050 23100 23150 23200 23250	0470 0471 0472 0473 0474		CALL VWPORT (0.0, 120.0, 25.0, 100.0) CALL WINDOW (0.0, RSHA, LXF, HXF) CALL DASHPT (0) TNX = RSHA / 6.0 TY = LND / 6
23300 23350 23400 23450	0475 0476 0477 0478		TNY = TMPF (TY) CALL MOVE (TNX, CALL DRAW ((TNX + (0.01250 * RSHA)), TNY) CALL DRAW (TNX, CALL TNX, CALL CALL TALL TALL TALL TALL TALL TALL
23500 23550 23600 23650	0479 0480 0481 0482		CALL DRAW ((TNX - (0.01250 * RSHA)), TNY) CALL DRAW (TNX, (TNY - (ER * 8.4))) TNX = RSHA / 3.0 TY = LND / 3 TNY = TMPF (TY)
23700 23750 23800 23850 23900	0483 0484 0485 0486 0487		CALL MOVE (TNX, (TNY - (ER * 8.4))) CALL DRAW ((TNX + (0.01250 * RSHA)), TNY) CALL DRAW (TNX, (TNY + (ER * 8.4))) CALL DRAW (TNX - (0.01250 * RSHA)), TNY)
23900 23950 24000 24050 24100	0487 0488 0489 0490 0491		CALL DRAW (TNX, TNX = RSHA / 2.0 TY = LND / 2 TNY = TMPF (TY)
24150 24200 24250	0492 0493 0494		CALL MOVE (TNX, (TNY - (ER * 8.4))) CALL DRAW ((TNX + (0.01250 * RSHA)), TNY) CALL DRAW (TNX, (TNY + (ER * 8.4))) CALL DRAW ((TNX - (0.01250 * RSHA)), TNY)
24300 24350 24400 24450	0495 0496 0497 0498		CALL DRAW ((TNX = $(0.01250 \text{ w} \text{ KShA})$), TNY = (ER * 8.4))) TNX = RSHA * 2.0 / 3.0 TY = LND * 2 / 3 TNY = TMPF (TY)
24500 24550 24600 24650	0499 0500 0501 0502		CALL MOVE (TNX, (TNY - (ER * 8.4))) CALL DRAW ((TNX + (0.01250 * RSHA)), TNY) CALL DRAW (TNX, (TNY + (ER * 8.4))) CALL DRAW ((TNX - (0.01250 * RSHA)), TNY)
24700 24750 24800 24850 24900	0503 0504 0505 0506 0507		CALL DRAW ((TNX - (0.01230 * $KSRA)$), TNY - (ER * 8.4))) TNX = RSHA * 5.0 / 6.0 TY = LND * 5 / 6 TNY = TMPF (TY)
24900 24950 25000 25050 25100	0507 0508 0509 0510 0511		CALL MOVE (TNX, (TNY - (ER * 8.4))) CALL DRAW ((TNX + (0.01250 * RSHA)), TNY) CALL DRAW (TNX, (TNY + (ER * 8.4))) CALL DRAW ((TNX - (0.01250 * RSHA)), TNY)
25150 25200	0512 0513		CALL DRAW (TNX, (TNY - (ER # 8.4))) CALL MOVE (0.0, TF1)

25250	0514	CALL DASHPT (5)
25300	0515	CALL POLY (LND, TT, TMPF)
	0516	
25350		IF (PL .EQ. 1) GO TO 610
25400	0517	
25450	0518	CALL CMCLOS
25500	0519	READ*
25550	0520	CALL CMOPEN
25600	0521	CALL NEWPAG
25650	0522	GO TO 650
25700	0523	610 CALL GRSTOP
25750	0524	WRITE (6, 620)
		620 FORMAT (X. YOU MUST NOW REMOVE THE COMPLETED
25800	0525	+ GRAPHICS DISPLAY, INSERT A NEW')
25850	0526	Parte (6 620)
25900	0527	WRITE (6, 630) 630 FORMAT (X. 'SHEET OF PAPER, AND TOTALLY RESET THE
25950	0528	
26000	0529	+ 4662 PLOTTING MACHINE.')
26050	0530	WRITE (6, 640)
26100	0531	640 FORMAT (X, ' PRESS <ret> WHEN THIS IS DONE.')</ret>
26150	0532	READ*
26200	0533	650 IF (REP .EQ. 1) GO TO 730
26250	0534	660 WRITE (6. 670)
		THE TO FUEL TO EVOLUE TO EVOLUE THE DICOLAVO
26300	0535	+ IF SO, TYPE IN 1; IF NOT, 2')
26350	0536	
26400	0537	READ 680, REP
26450	0538	680 FORMAT (11)
26500	0539	1F (REP.EQ. 1) GO TO 710
26550	0540	IF (REP .EQ. 2) GO TO 730
26600	0541	WRITE (6, 690)
26650	0542	690 FORMAT (X. YOU HAVE TYPED IN A NUMBER THAT CANNOT
26700	0543	+ BE UTILIZED. YOU WILL HAVE')
26750	0544	WRITE (6, 700)
	0545	700 FORMAT (X. ' TO TRY AGAIN.')
26800		GO TO 660
26850	0546	
26900	0547	710 TSF = DTF(LND) - DTF(1)
26950	0548	TSF = TSF ** 2.0
27000	0549	TSF = SQRT (TSF)
27050	0550	IF $(DTF(1), LE, DTF(LND))$ MDF = $(0.5 * TSF) + TF1$
27100	0551	IF $(DTF(1) . GT. DTF(LND))$ MDF =- $(0.5 * TSF) + TF1$
27150	0552	ER = 1.2 * TSF / 420.0
27250	0553	LXF = -(0.6 # TSF) + MDF
27300	0554	HXF = (0.6 * TSF) + MDF
27350	0555	LOWF = (0.4 * TSF) + LXF
27400	0556	MIDF = (0.8 + TSF) + LXF
27405	0557	IF(NK, EQ. 1) ER = ER # 2.0
27409	0558	IF(ZZ . EQ. 1) ER = ER * 4.0
27413	0559	IF (NK . EQ. 1) LXF = -(1.2 * TSF) + MDF
27417	0560	IF(NK . EQ. 1) HXF = (1.2 * TSF) + MDF
27421	0561	IF (NK . EQ. 1) LOWF = (0.8 # TSF) + LXF
27425	0562	IF (NK, EQ. 1) MIDF = (1.6 * TSF) + LXF
27429	0563	IF (ZZ .EQ. 1) LXF =-(2.4 * TSF) + MDF
27433	0564	IF (ZZ .EQ. 1) HXF = (2.4 + TSF) + MDF
27437	0565	IF(ZZ . EQ. 1) LOWF = (1.6 * TSF) + LXF
27441	0566	IF(ZZ . EQ. 1) MIDF = (3.2 * TSF) + LXF
27450	0567	IF (PL .EQ. 2) GO TO 720
27500	0568	GO TO 550
27550	0569	720 CONTINUE
27600	0570	GO TO 560

27650 27700 27750 27800	0571 0572 0573 0574	730	REP = 2 ER = 1.0 IF (PL .EQ. 1) GO TO 740 GO TO 750
27850 27900 27900 28000 28100 28100 28100 28200 28250 28300 28350 28400 28550 28550 28550 28650 28650 28650 28650 28650 28650 28650 28650 28650 28650 28650 28650 28650 28650 28650 28650 28650 28650 28750 28800	0575 0576 0577 0578 0580 0581 0582 0583 0584 0585 0586 0586 0587 0588 0588 0589 0590 0591 0592 0593 0594	740 750	CALL GRSTRT (4662, 1) CALL VWPORT (0.0, 130.0, 0.0, 100.0) CALL WINDOW (0.0, 130.0, 0.0, 100.0) CALL DASHPT (0) CALL DRAW (120.0, 25.0) CALL DRAW (120.0, 25.0) CALL DRAW (120.0, 100.0) CALL DRAW (0.0, 25.0) CALL DRAW (0.0, 25.0) CALL DRAW (0.0, 62.5) CALL DRAW (120.0, 85.0) CALL DRAW (3.0, 85.0) CALL DRAW (3.0, 85.0) CALL MOVE (6.0, 85.0) CALL MOVE (6.0, 85.0) CALL TXICUR (4) IF (REP .EQ. 1) GO TO 760 CALL TEXT (9, POST)
28850 28950 29000 29050 29150 29250 29250 29250 29350 29450 29450 29550 29550 29550 29600 29650 29650	0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607 0608 0608 0608 0609 0610 0611 0612	760 770	GO TO 770 CALL RNUMBR (MIDT, 1, 5) CALL TEXT (5, DEG) CALL MOVE (20.0, 64.5) CALL DRAW (20.0, 60.5) CALL DRAW (40.0, 64.5) CALL DRAW (40.0, 60.5) CALL DRAW (40.0, 66.5) CALL DRAW (60.0, 66.5) CALL DRAW (60.0, 64.5) CALL DRAW (80.0, 64.5) CALL DRAW (80.0, 64.5) CALL DRAW (80.0, 64.5) CALL DRAW (100.0, 60.5) CALL DRAW (100.0, 60.5) CALL DRAW (100.0, 60.5) CALL DRAW (3.0, 40.0) CALL DRAW (3.0, 40.0) CALL DRAW (3.0, 40.0) CALL MOVE (6.0, 40.0) IF (REP .EQ. 1) GO TO 780 CALL TEXT (9, NEGT)
29750 29850 29850 29950 30000 30100 30150 30250 30250 30350 30400 30450	0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623 0624 0625 0626 0627	780 790	GO TO 790 CALL RNUMBR (LOWT, 1, 5) CALL TEXT (5, DEG) CALL MOVE (0.0, 62.0) CALL TXICUR (7) CALL TEXT (1, ZERO) CALL TEXT (1, ZERO) CALL MOVE (4.0, 24.0) CALL TEXT (4, TIME) CALL MOVE (20.0, 24.0) CALL TXICUR (8) CALL INUMBR (INT1, 2) CALL NUMBR (INT2, 3) CALL INUMBR (INT2, 3) CALL NUMBR (INT3, 3)

$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	30550 0629 CALL 30600 0630 CALL 30600 0630 CALL 30700 0632 CALL 30750 0633 CALL 30750 0633 CALL 30850 0635 CALL 30850 0635 CALL 30900 0636 CALL 30950 0637 CALL 30950 0637 CALL 31000 0638 CALL 31100 0643 CALL 31100 06440 CALL 311200 0642 CALL 311200 06441 CALL 311300 06443 CALL 311400 06445 CALL 311400 06445 CALL 311500 06447 CALL 311600 0650 CALL 31650 0651 CALL 31700 0652 CALL 31800 0654	<pre>MOVE (80.0, 24.0) INUMBR (INT4, 3) MOVE (100.0, 24.0) INUMBR (INT5, 3) MOVE (120.0, 24.0) TXICUR (9) INUMBR (INT6, 3) TXICUR (4) MOVE (0.0, 20.0) TEXT (19, TMC) MOVE (42.0, 20.0) MOVE (42.0, 20.0) MOVE (42.0, 16.0) TEXT (19, TOC) MOVE (42.0, 16.0) DASHPT (3) DRAW (120.0, 16.0) DASHPT (3) DRAW (120.0, 16.0) TEXT (19, TIC) MOVE (42.0, 12.0) DASHPT (7) DASHPT (7) DASHPT (7) DASHPT (7) DASHPT (7) MOVE (30.0, 85.0) DASHPT (9) MOVE (30.0, 40.0) DRAW (120.0, 25.0, 100.0) WINDOW (0.0, RSHA, LXT, HXT) MOVE (0.0, 62.5) DASHPT (2) POLY (LND, TT, DTM) DASHPT (0) = RSHA / 6.0</pre>
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	32300 0664 TNY 32350 0665 CALI 32400 0666 CALI 32450 0667 CALI 32500 0668 CALI	= DTM (TY) MOVE ((TNX - (RSHA * 0.01250)), (TNY - (ER * 1.0))) DRAW ((TNX + (RSHA * 0.01250)), (TNY + (ER * 1.0))) MOVE ((TNX - (RSHA * 0.01250)), (TNY + (ER * 1.0))) DRAW ((TNX + (RSHA * 0.01250)), (TNY - (ER * 1.0)))

DTM (TY) TNY = CALL MOVE ((TNX - (RSHA * 0.01250)), (TNY - (ER * 1.0))) CALL DRAW ((TNX + (RSHA * 0.01250)), (TNY + (ER * 1.0))) CALL MOVE ((TNX - (RSHA * 0.01250)), (TNY + (ER * 1.0))) CALL DRAW ((TNX + (RSHA * 0.01250)), (TNY + (ER * 1.0))) CALL DRAW ((TNX + (RSHA * 0.01250)), (TNY - (ER * 1.0))) RSHA # 5.0 / 6.0 LND # 5 / 6 TNX = TY = DTM (TY) TNY = CALL MOVE ((TNX - (RSHA * 0.01250)), (TNY - (ER * 1.0))) CALL DRAW ((TNX + (RSHA * 0.01250)), (TNY + (ER * 1.0))) CALL MOVE ((TNX - (RSHA * 0.01250)), (TNY + (ER * 1.0))) CALL MOVE ((TNX - (RSHA * 0.01250)), (TNY + (ER * 1.0))) 1.0))) CALL DRAW ((TNX + (RSHA * 0.01250)), CALL MOVE (0.0, 62.5) (TNY - (ER * 1.0))) (3) CALL DASHPT CALL POLY (LND, TT, DTO) CALL DASHPT (0) TNX = RSHA / 6.0 TY = LND / 6 TNY = DTO (TY) CALL MOVE (TNX, CALL DRAW ((TNX + (0.01250 * RSHA)), (TNY - (ER # 1.0))) TNY) CALL DRAW (TNX, CALL DRAW ((TNX - (0.01250 * RSHA)), TNY) (TNY - (ER * 1.0))) (TNY + (ER * 1.0))) = RSHA / 3.0 = LND / 3 TNX TY TNY DTO (TY) = (TNY - (ER # 1.0))) CALL MOVE (TNX, CALL DRAW ((TNX + (0.01250 * RSHA)), . TNY) (TNY + (ER * 1.0))) CALL DRAW (TNX, CALL DRAW ((TNX - (0.01250 * RSHA)); TNY) (TNY - (ER * 1.0))) DRAW (TNX, = RSHA / 2.0 = LND / 2 CALL DRAW TNX TY = DTO (TY) TNY CALL MOVE (TNY - (ER # 1.0))) CALL MOVE (TNX, CALL DRAW ((TNX + (0.01250 * RSHA)), (TNY) (TNY + (ER * 1.0))) CALL DRAW (TNX. CALL DRAW ((TNX - (0.01250 * RSHA)), TNY) (TNY - (ER * 1.0))) DRAW (TNX, DRAW (TNX, = RSHA * 2.0 / 3.0 - IND * 2 / 3 TNX = LND = DTO TY TNY DTO (TY) TNY = 010 (11, CALL MOVE (TNX, CALL DRAW ((TNX + (0.01250 # RSHA)), TNY) (TNY + (ER # 1.0))) CALL DRAW (TNX, CALL DRAW (TNX, (0.01250 * RSHA)), TNY) CALL DRAW ((TNX - (0.01250 * RSHA)), TNY) (TNY - (ER * 1.0))) CALL DRAW (TNX, CALL DRAW (TNX, TNX = RSHA # 5.0 / 6.0 - LND # 5 / 6 = DTO (TY) TNY (TNY - (ER * 1.0))) CALL MOVE CALL MOVE (TNX. CALL DRAW ((TNX + (0.01250 * RSHA)), TNY) (TNY + (ER # 1.0))) CALL DRAW (TNX, (TNY + (ER # 1.0))) CALL DRAW ((TNX - (0.01250 # RSHA)), TNY) CALL DRAW (TNX, (TNY - (ER # 1.0))) (TNX, CALL DASHPT (0)

36200 0742 36250 0743 36300 0744 36350 0745 36400 0746 36450 0747 36500 0748 36550 0749	TNX = RSHA / 6.0 TY = LND / 6 TNY = DTI (TY) CALL MOVE (TNX, (TNY - (ER * 1.0))) CALL DRAW ((TNX + (0.01082 * RSHA)), (TNY + (ER * 0.5))) CALL DRAW ((TNX - (0.01082 * RSHA)), (TNY + (ER * 0.5))) CALL DRAW (TNX, (TNY - (ER * 1.0))) TNX = RSHA / 3.0 TNX = RSHA / 3.0
36600 0750 36650 0751 36700 0752 36750 0753 36800 0754 36850 0755 36900 0756 36950 0757	TY = LND / 3 TNY = DTI (TY) CALL MOVE (TNX. CALL DRAW ((TNX + (0.01082 * RSHA)), (TNY + (ER * 0.5))) CALL DRAW ((TNX - (0.01082 * RSHA)), (TNY + (ER * 0.5))) CALL DRAW ((TNX - (0.01082 * RSHA)), (TNY + (ER * 0.5))) CALL DRAW (TNX, (TNY - (ER * 1.0))) TNX = RSHA / 2.0 TY = LND / 2
37000 0758 37050 0759 37100 0760 37150 0761 37200 0762 37250 0763 37300 0764	TNY = DTI (TY) CALL MOVE (TNX, CALL DRAW ((TNX + (0.01082 * RSHA)), (TNY - (ER * 1.0))) CALL DRAW ((TNX - (0.01082 * RSHA)), (TNY + (ER * 0.5))) CALL DRAW (TNX, TNX = RSHA * 2.0 / 3.0 TY = LND * 2 / 3
37350 0765 37400 0766 37450 0767 37500 0768 37550 0769 37600 0770 37650 0771 37700 0772	TNY = DTI (TY) CALL MOVE (TNX, CALL DRAW ((TNX + (0.01082 * RSHA)), (TNY + (ER * 0.5))) CALL DRAW ((TNX - (0.01082 * RSHA)), (TNY + (ER * 0.5))) CALL DRAW (TNX, (TNY + (ER * 0.5))) CALL DRAW (TNX, (TNY - (ER * 1.0))) TNX = RSHA * 5.0 / 6.0 TY = LND * 5 / 6 TNY = DTI (TY)
37700 0772 37750 0773 37800 0774 37850 0775 37900 0776 37950 0777 38000 0778 38050 0779	CALL MGVE (TNX, CALL DRAW ((TNX + (0.01082 * RSHA)), (TNY + (ER * 1.0))) CALL DRAW ((TNX - (0.01082 * RSHA)), (TNY + (ER * 0.5))) CALL DRAW (TNX, CALL DRAW (TNX, CALL MOVE (0.0, 62.5) CALL DASHPT (7) CALL DOLY (LND, TT, DTI)
38100 0780 38150 0781 38200 0782 38250 0783 38300 0784 38350 0785 38400 0786 38450 0787	IF (REP.EQ. 1) GO TO 920 IF (PL.EQ. 1) GO TO 800 CALL CMCLOS READ* CALL CMOPEN CALL CMOPEN CALL NEWPAG GO TO 840
38500 0788 38550 0789 38600 0790 38650 0791 38700 0792 38750 0793 38800 0794 38850 0795	<pre>800 CALL GRSTOP WRITE (6, 810) 810 FORMAT (X, ' YOU MUST NOW REMOVE THE COMPLETED + GRAPHICS DISPLAY, INSERT A NEW') WRITE (6, 820) 820 FORMAT (X, ' SHEET OF PAPER, AND TOTALLY RESET THE + 4662 PLOTTING MACHINE.') WRITE (6, 830)</pre>
38900 0796 38950 0797 39000 0798	830 FORMAT (X, ' PRESS <ret> WHEN THIS IS DONE.') READ* 840 CONTINUE</ret>

•

.

39050 39100	0799	850 860	WRITE (6. 860) FORMAT (X, ' DO YOU WISH TO EXPAND THIS DISPLAY?
39150	0801	+	+ IF SO. TYPE IN 1; IF NOT, ')
39200	0802		READ 870, REP
39250	0803	870	FORMAT (11)
39300	0804		IF (REP.EQ. 1) GO TO 900
39350	0805		IF (REP.EQ. 2) GO TO 920
39400	0806		WRITE (6, 880)
39450	0807	880	FORMAT (X, YOU HAVE TYPED IN A NUMBER THAT CANNOT
39500	0808	4	+ BE UTILIZED. YOU WILL HAVE')
39550	0809		WRITE (6, 890)
39600	0810	890	FORMAT (X, ' TO TRY AGAIN.')
39650	0811		GO TO 850
39700	0812	900	TST = DTO(LND) - DTI(LND)
39750	0813		TST = TST ** 2.0
39800	0814		TST = SQRT (TST)
39850	0815		ER = 1.2 * TST / 50.0
39900	0816		IF(NK . EQ. 1.0) ER = 2.0
39950	0817		LXT = -0.6 * TST
40000	0818		HXT = 0.6 * TST
40050	0819		LOWT = -0.3 * TST
40100	0820		MIDT = 0.3 * TST
40104	0821		IF (NK .EQ. 1) LXT =-1.2 * TST
40108	0822		IF (NK .EQ. 1) $HXT = 1.2 + TST$
40112	0823		IF (NK .EQ. 1) LOWT =-0.6 # TST
40116	0824		IF (NK . EQ. 1) MIDT = 0.6 * TST
40120	0825		IF (ZZ .EQ. 1) LXT =-2.4 # TST
40124	0826		IF(ZZ . EQ. 1) HXT = 2.4 + TST
40128	0827		IF(ZZ . EQ. 1) LOWT = -1.2 * TST
40132	0828		IF(ZZ . EQ. 1) MIDT = 1.2 # TST
40140	0829		IF (NK EQ. 1) ER = ER # 2.0
40145	0830		IF(ZZ . EQ. 1) ER = ER # 4.0
40150	0831		IF (PL .EQ. 2) GO TO 910
40200	0832	010	GO TO 740
40250	0833	910	CONTINUE
40300	0834		GO TO 750
40350	0835	020	CALL GRSTOP
40400	0836	920	
40450	0837		RETURN
40500	0838		END

,